铜绿假单胞菌引起的慢性肺部感染是囊性纤维化 (CF) 患者发病和死亡的主要原因。针对铜绿假单胞菌群体感应 (QS) 系统的抗毒力药物作为抗生素替代品或佐剂得到了深入研究。之前在非 CF 铜绿假单胞菌参考菌株中进行的研究表明,旧药物氯硝柳胺和氯福克醇可以成功地重新用作分别针对 las 和 pqs QS 系统的抗毒力药物。然而,CF 肺中频繁出现的 QS 缺陷突变体破坏了 QS 抑制剂在 CF 治疗中的应用。在这里,我们在 100 个铜绿假单胞菌 CF 分离株中研究了 QS 信号的产生和对氯硝柳胺和氯福克醇的敏感性,旨在拓宽目前对抗 QS 化合物在 CF 治疗中的潜力的认识。结果表明,我们收集的 CF 分离株中分别有 85%、78% 和 69% 能够熟练使用 pqs、rhl 和 las QS 系统。氯硝柳胺和氯福克醇在体外抑制 QS 和毒力的能力差异很大且因菌株而异。氯硝柳胺的活性范围总体较低,其对 las 信号产生的负面影响与毒力因子产生的减少无关。另一方面,氯福克醇在 CF 分离株中表现出更广泛的 QS 抑制作用,从而降低 pqs 控制的毒力因子绿脓菌素。总体而言,这项研究强调了在进行进一步的临床前研究之前针对大量铜绿假单胞菌 CF 临床分离株测试新型抗毒力药物的重要性,并证实了先前的证据,即 CF 分离株中存在对 QS 抑制剂具有天然耐药性的菌株。然而,研究还表明,对 pqs 抑制剂的耐药性低于对 las 抑制剂的耐药性,从而支持开发 pqs 抑制剂用于 CF 的抗毒力治疗。
确定优化的氯胺消毒处理和分配硝化问题需要监测几个参数。这些参数的量化对于理解和优化氯胺过程以及确定分配系统中可能存在硝化问题的区域至关重要。为了实施 NAP,CWS 应监测总氨氮、游离氨氮、亚硝酸盐氮、硝酸盐氮、一氯胺残留物、二氯胺残留物和总氯残留物。了解氯化曲线(见图 18-1)和这些监测参数的相关性提供了必要的信息,可以在处理方案中进行调整,以优化氯胺过程并最大限度地降低硝化风险。额外的过程管理可能包括监测游离氯和 pH 值。当怀疑存在硝化时,可以使用发现的细菌的种类和量化作为测量硝化程度的手段。
近年来,2% MOX(长效注射剂)越来越多地被用作产羔前后母羊的治疗方法。然而,一个复杂的因素是,该产品也被越来越多地用作羊疥癣的控制措施,这导致对蠕虫种群造成显著的无意选择压力,通常是在冬季避难所较少的时候。由于不仅蠕虫而且疥螨也对 MOX 具有抗药性,SCOPS 和 Zoetis(制造商)举行了一次联合研讨会,以商定最佳实践指南,从而保护 MOX 的功效。SCOPS 网站上提供了会议成果和对处方者和农民的建议的摘要以及完整的会议记录。对于硝苯腈(不再可用),当只针对 H. contortus 物种进行控制时,使用窄谱驱虫剂来控制 H. contortus 几乎总是比使用广谱药物更好。然而,在避难所中的血矛线虫数量较少的时候(例如秋季/冬季),使用硝苯腈或氯氰碘柳胺可能会对 AR 产生高度选择性,因此应慎重考虑。
苯并呋喃取代的查耳酮衍生物;复合物 1 [(4) ‐ ((1E) ‐ 3 ‐ (1) ‐ 苯并呋喃 ‐ 2 ‐ 基) ‐ 3 ‐ 氧代丙 ‐ 1 ‐ 烯 ‐ 1 ‐ 基] ‐ 2 甲氧基苯基氯乙酸酯) 和复合物 2 [3 ‐ [(1E) ‐ 3 ‐ (1 ‐ 苯并呋喃 ‐ 2 ‐ 基) ‐ 3 ‐ 氧代丙 ‐ 1 ‐ 烯 ‐ 1 ‐ 基)] 苯基氯乙酸酯) 被合成 16,17 并进行了表征 (Alioglu 等人,已提交)。在二甲基亚砜 (DMSO) 中制备查耳酮复合物 (复合物 1 和 2) (50 mM) 和氯硝柳胺 (20 mM) 的储备浓度。复合物浓缩液中的最终 DMSO 浓度确定为 0.2% v/v,文献报道该浓度无毒。18 将复合物的储备液分装并储存在 −20°C 下。Niclosamide 购自 Sigma(目录号:N3510;Sigma-Aldrich)。碘化丙啶 (PI) 购自市售(Sigma-Aldrich)。Hoechst 染料 33342 来自 Enzo Life Sciences。
摘要:针对 PD-1/PD-L1 免疫检查点的单克隆抗体已显著改善某些癌症的治疗,但需要新药物、新组合和新治疗方式来重振免疫抵抗性肿瘤的免疫监视。引发抗肿瘤免疫的一种选择是使用已获批和上市的药物,这些药物以调节 PD-1/PD-L1 检查点的表达和功能而闻名。在这里,我们回顾了几种已知可以改变检查点的药物,它们要么直接通过阻断 PD-L1,要么间接通过作用于上游效应物(如 STAT3)来抑制 PD-L1 转录或诱导其蛋白酶体降解。具体来说,本文介绍了已获批准的药物三碘甲状腺原氨酸、阿折地平(及相关的二氢吡啶类钙通道阻滞剂)、氯硝柳胺、阿苯达唑/氟苯达唑和一些其他 PD-1/PD-L1 检查点调节剂(瑞格列奈、匹莫齐特、非诺贝特、氯那唑酸、普萘洛尔)的重新定位。它们与 PD-L1 结合或抑制其表达和功能的能力为与 PD-1 靶向生物治疗药物的结合提供了新的前景。这些已知且价格合理的药物可能有助于改善癌症的治疗。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月13日。 https://doi.org/10.1101/2025.02.13.638192 doi:Biorxiv Preprint
图3暴露于紫外线的皱纹模式的产生/擦除的进化过程。(a – e)分别暴露于0、5、10、15和20分钟的平滑样品时,皱纹模式的生成过程的3D AFM图像。将这些样品加热至120°C。(365 nm UV的光强度约为3.5 mW/cm 2)。(f)暴露于254 nm UV光的皱纹图案的3D AFM图像持续5-7.5分钟(254 nm UV光强度约为3.5 mW/cm 2)。(g)波长(λ,黑线,左垂直轴)和皱纹的振幅(a,红线,右垂直轴)是UV光照射时间的函数。(H)An的二聚化过程的动力学。uv-vis光谱在豌豆/ABA膜中ABA之间的二聚化反应。混合溶液在石英板上旋转,并将样品暴露于365 nm的紫外线,分别为0、2、4、6、8、10、12、14、16分钟。样品被原位测量。
环三亚甲基三硝胺 (CYCLONITE; HEXOGEN; RDX) 和环四亚甲基四硝胺 (HMX; OCTOGEN) 混合物,用按质量计不少于 15% 的水润湿,或 环三亚甲基三硝胺 (CYCLONITE; HEXOGEN; RDX) 和环四亚甲基四硝胺 (HMX; OCTOGEN) 混合物,用按质量计不少于 10% 的减敏剂脱敏
CD36 正在成为癌症治疗的一个新靶点。1,2 CD36 是细胞表面蛋白 B 类清道夫受体家族的成员,可促进游离脂肪酸的吸收以进行脂质代谢。3 CD36 通过促进癌症转移、支持耐药性和调节肿瘤免疫来促进肿瘤生长。1,4 最近的研究表明,CD36 在卵巢肿瘤中上调。5,6 与肿瘤微环境中的脂肪细胞相互作用导致 CD36 上调,从而增强卵巢肿瘤转移。2 基于 CD36 的疗法,包括单克隆抗体和多肽,已被证明可有效抑制癌症转移。1 然而,就卵巢癌的耐药性而言,CD36 的作用尚不清楚,也没有关于利用 CD36 进行穿梭疗法以靶向耐药卵巢癌细胞的报道。越来越多的证据表明,线粒体在卵巢癌细胞的耐药性中起着关键作用。7-9 最近的一项研究表明,耐药性卵巢癌细胞的线粒体氧化磷酸化增加。10 线粒体靶向药物,如盐霉素和氯硝柳胺,已显示出通过削弱氧化磷酸化来克服耐药性的活性。11-13 然而,系统性毒性限制了这些药物在