• 一种全新独特的化学成分 • 一种不含异氰酸酯、BPA 和皮肤致敏剂的粘合剂 • 符合最新的 SVHC 和 REACH 法规 • 在室温下快速固化,放热反应可控,无需烘干固化,从而减少制造占地面积和二氧化碳排放量 • 易于储存和运输,没有特定的储存先决条件或限制 • 一种解决吸水性和湿气敏感性问题的解决方案,即使在潮湿条件下,也能在各种基材上保持强大的强度和完整性 • 可有效填充粘合应用中复杂或狭窄的间隙 • 能够在中空纤维过滤器灌封应用中具有高渗透性 • 只需最少的设备改动,即可从现有粘合剂系统有效过渡
多羟基甲酸酯,称为非异氰酸酯聚氨酯(NIPU),是通过胺固化的多膜循环碳酸盐来制造的,可从多种合成和生物基于生物的环氧树脂和二氧化合物中通过碳二氧化物的化学固定固定。同氰酸酯单体对水分敏感高度敏感,而NIPU加工可耐受性和各种官能团。这对开发高级功能填充剂非常有益,因为不需要特殊的干燥程序或其他预处理。在新兴纳米填料中,石墨烯由于其出色的机械,热和电性能而起着重要作用。作为2D碳聚合物,由缺陷 - 游离SP 2-杂交碳单层组成,石墨烯具有1 TPA的非凡刚度,[6] 5000 W m-1 K-1 K-1,[7]的热导率为5000 W m-1 K-1,[7] [7] 6000 S Cm-1 [8]和2600 MOxipe的电导率。[9]因此,石墨烯对具有出色的机械,热和电性能的多功能聚合物纳米材料的发展具有巨大的希望。[10]与石墨烯相关的纳米材料,例如多壁碳纳米管,石墨氧化物(GO)或热还原的石墨氧化物(TRGO)(TRGO),以改善各种多种聚生物材料的机械和电气性能,包括多种聚生物材料[11,12,12]和Polyure-ysess和Polyure-ysess和Polyure-ysess和Polyure-ysess和Polyure-yses和Polyure-yses。[13,14]其他突出的例子是针对传感器应用定制的石墨烯/弹性体纳米复合材料。这种方法已由Novoselov等人开创。[15–19]尽管边缘量的纳米填料可以提供重大的财产改进,但纳入较高量的基于差异的填充剂通常会在处理和成本效率方面构成问题,从而限制其在轻量级构造中的应用。为了降低成本并改善加工,已经进行了几次尝试,以开发工业可行的合成路线,以定制与石墨烯相关的材料作为功能填充剂。几种自上而下的技术采用石墨作为丰富的市售中间体,用于去角质几层或单层石墨烯。使用其苏格兰胶带技术从石墨表面剥离单层石墨烯。[20]通常,从石墨中去角质需要很高的剪切力才能克服堆积在石墨>的石墨烯层之间的范德华吸引力
Cyano群体以其丰富而多样的重新反应而闻名,因此使其成为访问各种官能团的多功能前体,例如羧酸,醛,胺,胺,胺,胺,胺,四唑,阿沙唑和异唑和异质组。和药品。2加上,氰基覆盖的有机化合物在有机电子和相关技术(例如有机太阳能电池(OSC),或者发光二极管二极管(OLEDS)(OLEDS),非线性光学(NLO)(NLO),光转换剂,光转化剂,有机化的cotals和Phototectes cotal和Photots Phototects和Phototsphtphotox cotal中,有机电子和相关技术的多样化起作用起作用。3因此,通过采用一系列氰化试剂来实现cyanation的重要过程。考虑到环境的影响和毒性,从使用常规的cn型试剂(例如KCN,NACN,Zn(CN)₂和K₄[Fe(CN)₆]到相对更安全的金属硫代盐,从使用常规cn染色试剂进行了明显的过渡。4a,这些试剂中的一些产生化学计量的金属废物和/或释放有害的HCN。为了克服这些多年生问题,已经探索了各种非金属有机氰化试剂,用于氰化含有丙酮氰基氢蛋白,三甲基甲硅烷基氰化物(TMSCN),丙烷基丙烯酸酯,丙烷二酸,乙酸乙酯乙酸乙酯,和异西亚酯。4B此外,硝基苯二烯酸和苯甲氰酸酯也被用作金属催化中的有机溶剂。更重要的是,与广泛研究的C – CN键形成相比,构建X – CN键(X = N,S,O)的探索程度较小。8在过去十年中,许多氰化策略
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年1月15日发布。 https://doi.org/10.1101/2025.01.14.632953 doi:biorxiv Preprint
聚氨酯(PU)在全球生产的第6个最多的聚合物中排名,并且由于其提供的物业多样性而被广泛用于多种应用中。尽管如此,PU仍在提出有关环境,立法,健康和回收问题的问题。在这种情况下,引入了异氰酸盐毒性,异氰酸酯,水生PU系统和非异氰酸酯聚氨酯(NIPU),以防止异氰酸酯处理风险。此外,可持续的原料脱颖而出,综合了绿色的pu。特别是,基于生物的多功能醇和异氰酸酯化合物已经出现了具有靶向化学和机械性能的完全基于生物的PU材料。最后,市场上放置的大量PU现在导致了有关其在环境中积累的环境问题。因此,最近开发了几种方法,以促进其寿命终止的管理和可回收性。本综述提供了有关PUS合成的最新进展的完整概述,重点是替代有毒异氰酸酯和基于石油的资源,使用更绿色的过程及其回收方法。在快速摘要有关脓历史和全球状况的摘要之后,在学术和工业方面引入了不同的基于生物的酒精和异氰酸酯,以及相应的PU概述了。此外,讨论了产生nipus的不同合成途径。最后,概述了脓液的酶和化学回收。©2024作者。由Elsevier Ltd.这是CC BY-NC许可证(http://creativecommons.org/licenses/by-nc/4.0/)下的开放访问文章
2.1 软质聚氨酯泡沫的基本化学性质…………………………………………... 5 2.1.1 发泡反应………………………………………………………………………………………….. 5 2.1.2 凝胶化反应……………………………………………………………………………………… 6 2.1.3 异氰酸酯基团化学性质…………………………………………………………………………... 7 2.1.4 泡沫配方的组分………………………………………………………………………….8 2.1.4.1 异氰酸酯 ………………………………………………………………………………… 10 2.1.4.2 多元醇 ………………………………………………………………………………... 12 2.1.4.3 水 ……………………………………………………………………………………… 17 2.1.4.4 催化剂 …………………………………………………………………………………… 17 2.1.4.5 表面活性剂 ………………………………………………………………………………… 19 2.1.4.6 交联剂 …………………………………………………………………………….20 2.1.4.7 辅助发泡剂 ………………………………………………………………… 21 2.1.4.8 添加剂 ………………………………………………………………………………….. 21
2.1 软质聚氨酯泡沫的基本化学性质…………………………………………... 5 2.1.1 发泡反应………………………………………………………………………………………….. 5 2.1.2 凝胶化反应……………………………………………………………………………………… 6 2.1.3 异氰酸酯基团化学性质…………………………………………………………………………... 7 2.1.4 泡沫配方的组分………………………………………………………………………….8 2.1.4.1 异氰酸酯 ………………………………………………………………………………… 10 2.1.4.2 多元醇 ………………………………………………………………………………... 12 2.1.4.3 水 ……………………………………………………………………………………… 17 2.1.4.4 催化剂 …………………………………………………………………………………… 17 2.1.4.5 表面活性剂 ………………………………………………………………………………… 19 2.1.4.6 交联剂 …………………………………………………………………………….20 2.1.4.7 辅助发泡剂 ………………………………………………………………… 21 2.1.4.8 添加剂 ………………………………………………………………………………….. 21
摘要:近年来,由于其治疗潜力和多功能性在药物化学中,有机苯苯甲酸盐引起了很大的关注。在这里,我们报告了5-苯基碳酰甲基戊烯基硒酸(SELSA-2)抑制的机制,这是特征良好的组蛋白脱乙酰基酶抑制剂suberoylanilide suberoylanilide hydroxamic的类似物(Sahavorinostat)。我们表明,组蛋白脱乙酰基酶6和10可以促进硒氰酸酯水解产生硒酸盐阴离子,并且我们通过可逆形成二苯胺来调节抑制活性,探索硒的氧化还原化学。组蛋白脱乙酰基酶6的2.15Å分辨率晶体结构与SELSA-2结合结构,最终证明它不是硒氰酸酯,而是硒酸盐阴离子,这是负责酶抑制的活性药理。