PBLG 360 PEG 8 20 – 36% 67 MA 180 – 323 PEG 1 – 42 88 – 97 % 39 PLL 150 – 2200 PEG 22 – 113 48% 68 PLLGA 9 PEG 11 – 114 96 – 99% 38 PCEVE 845 PS 60 77% 35 a abbreviations for polymer backbones and side-chains: MA (methacrylate); nb(诺本烯); ONBA(氧苯甲烯酸酐); NBA(Norbornene赤道); p n ba poly(n-丙烯酸丁酯); pdmaema(聚(2-(二甲基氨基)甲基丙烯酸乙酯); PMMA(聚(甲基丙烯酸甲基甲基甲基甲基))); PLA(聚(乳酸)); PS(聚苯乙烯); P T Ba(p t ba(p t ba(t丁基丙烯酸酯)异氰酸酯); PBLG(聚(聚γ-苯甲酰-L-谷氨酸)); PEG(聚乙二醇)); PLL(Poly(L-赖氨酸)); PLLGA(γ-Poly(-propargy-l-谷氨酸)); PCEVE(聚(氯乙基乙烯基醚))
产品增加 ARADUR ® 固化剂 15% ARALDITE ® 多功能环氧树脂 15% ARALDITE ® 双酚 F 环氧树脂 15% ARALDITE ® 工业胶粘剂 15% ARATHANE ® 高性能聚氨酯系统 15% AROCY ® 氰酸酯树脂 15% EPALLOY ® 特种环氧树脂 10% EPIBOND ® 胶粘剂 15% EPOCAST ® 高性能环氧边缘和空隙填料 18% ERISYS ® 环氧功能反应性改性剂 10% Eurelon ® 聚酰胺 30% EUREMELT ® 热塑性聚合物 15% Gabepro ® 和 Capcure® 硫醇固化剂 15% HyPox® 弹性体改性环氧树脂 10% Hypro® 反应性液体聚合物 10% KERIMID ® 聚酰亚胺树脂 15% MATRIMID ® 马来酰亚胺热固性和热塑性聚酰亚胺树脂 23% Nychem ® 特种丁腈乳胶 20% OMICURE ® 固化剂、促进剂和催化剂 15% 苯氧基树脂 15% REN、RenCast ® 、RENGEL、RENINFUSION、RENLAM、RENLEASE、RENPASTE、REN-PATCH、RENPIM、RenShape®、REN-WELD 工具产品 10%
摘要由于stewartia koreana叶子已在食品和药物管理局注册为可食用的草药材料,因此用于开发功能性食品,化妆品和药物。在这项研究中,我们建立了一种分析方法,可以同时分析两个指标(槲皮素3-O-乳糖苷)和等异氰酸酯(槲皮素3- o-葡萄糖苷),其中包含在S. koreana叶片中的两个指标。根据食品和药物安全部的健康功能指南,对分析方法进行了验证,以特异性,准确性,精度,定量限制和线性性。本研究中建立的分析方法显示,用于校准的相关系数值(r 2)超过0.9989。异苯甲酸和Hyperoside的总回收率分别为100.55和98.87%,分别为0.14-0.78和0.47-0.67%,分别为相对标准偏差。因此,建议将新的分析方法用于标准化原材料和高增值产品,该产品源自将来的S. koreana的叶子。
在这项工作中,多孔支架基于聚氨酯,氧化石墨烯(GO)和Iiracin纳米球。我们使用甲苯二异氰酸酯和聚电解质制造了支架,结合了氧化石墨烯和iCariin载荷的纳米球,使用各种分析技术(包括FTIR,XRD,XRD,H-NMR,13 C NMR和SEM)对支架进行了彻底表征。分解模式,显示了多周的稳定分解。体内分析的结果提供了其治疗潜力的令人信服的证据,两种脚手架变体都显示出良好的生物相容性在兔模型中,TDI/GO/I脚手架特别出色,骨骼再生增强,表现出了增强的骨骼再生,并且在四周的植入术中,在较大的植入术中,在较大的deflective中,在四周的植入术中,在较大的deflection中,均显示出较大的prive,呈现出色的deflective,呈现出色的deflective,呈现出色的deflection,呈现出色的deflective,并证明了deflective骨出现的依据,并显示出横放的术语。整个研究范围。
以下相关设备、部件和材料: a. 经过选择或改造以增强其对人类或动物造成伤亡、损坏设备或破坏农作物或环境的效力的“生物制剂”或放射性材料; b. 化学战(CW)剂,包括: 1. 化学战神经剂: a. O-烷基(等于或小于 C 10,包括环烷基)烷基(甲基、乙基、正丙基或异丙基)-氟膦酸酯,例如: 沙林(GB):O-异丙基甲基氟膦酸酯(CAS 107-44-8);和 梭曼(GD):O-频哪基甲基氟膦酸酯(CAS 96-64-0); b. : O-烷基(C 10 或以下,包括环烷基)N,N-二烷基(甲基、乙基、正丙基或异丙基)磷酰胺氰酸酯,例如:塔崩(GA):N,N-二甲基磷酰胺氰酸酯(CAS 77-81-6);c. O-烷基(H 或 C 10 或以下,包括环烷基)S-2-二烷基(甲基、乙基、正丙基或异丙基)-氨基乙基烷基(甲基、乙基、正丙基或异丙基)硫代膦酸酯及相应的烷基化和质子化盐,例如:VX:O-乙基 S-2-二异丙基氨基乙基甲基硫代膦酸酯 (CAS 50782-69-9);2. CW 发泡剂:a.硫芥子气,例如:1. 2-氯乙基氯甲基硫化物(CAS 2625-76-5);2. 双(2-氯乙基)硫化物(CAS 505-60-2);3. 双(2-氯乙硫)甲烷(CAS 63869-13-6);4. 1,2-双(2-氯乙硫)乙烷(CAS 3563-36-8);5. 1,3-双(2-氯乙硫)-正丙烷(CAS 63905-10-2);6. 1,4-双(2-氯乙硫)-正丁烷(CAS 142868-93-7);7. 1,5-双(2-氯乙硫)-正戊烷(CAS 142868-94-8); 8. 双(2-氯乙硫基甲基)醚(CAS 63918-90-1); 9. 双(2-氯乙硫基乙基)醚(CAS 63918-89-8); b. 路易氏剂,例如: 1. 2-氯乙烯基二氯胂(CAS 541-25-3); 2. 三(2-氯乙烯基)胂(CAS 40334-70-1); 3. 双(2-氯乙烯基)氯胂(CAS 40334-69-8); c. 氮芥子气,例如: 1. HN1:双(2-氯乙基)乙胺(CAS 538-07-8); 2. HN2:双(2-氯乙基)甲胺(CAS 51-75-2); 3.HN3:三(2-氯乙基)胺(CAS 555-77-1);
按照 3 类易燃液体的要求,将其存放在有遮盖的围堤区域。存放在通风良好的区域,远离热源或火源。始终保持容器关闭。与任何化学品一样,应通过良好的职业工作实践避免摄入、吸入和长时间或反复的皮肤接触。处理时必须佩戴经 AS1337 批准的护目镜。吸烟、进食、饮水或上厕所前务必洗手。硬化剂中的异氰酸酯与水反应时会放出气体。如果密闭容器出现内部压力迹象,请用布将其完全覆盖并缓慢取下盖子,以防止溅出或盖子剧烈喷出。在通风良好的条件下使用,避免吸入喷雾和烟雾。喷涂时,请佩戴正压供气式呼吸器。用户必须始终遵守各州喷漆法规的规定。本产品易燃。必须消除工作区域内或附近的所有火源。禁止吸烟。用泡沫、二氧化碳或干粉灭火。燃烧时会释放有毒烟雾。如果焊接表面涂有此涂料,请避免吸入烟雾。焊接前打磨涂层。
材料构成重要的环境挑战。它们是从不可再生资源中得出的,涉及生产过程中的高能消耗,并且是不可生物降解的,在生命周期结束时有助于土地ll废物。基于聚合物的泡沫可以逐渐释放化学物质(例如,甲醛,氰化氢和在操作和处置过程中的异氰酸酯等VOC,带来与健康相关的风险。11,12与其生产的密集能源需求相关的高碳排放也加剧了气候变化,这迫使对可持续替代方案的迫切需求。13在各种可持续材料中,源自生物量的绝缘材料(例如菌丝体复合材料(MBC))提出了有希望的替代方案。4 - 9,14,15菌丝体是真菌的营养部分,可以从生物质资源中种植,以形成有价值的复合材料。15,16这些基于菌丝体的复合材料具有多种优势,包括生物降解性和低体现的碳,因此有可能应用于减少温室气体排放的可能性。主要是因为它们的低能量制造过程和农业废料的利用,基于菌丝体的复合材料与基于石油的绝缘材料(如挤出的聚苯乙烯(XPS))相比具有重要的环境优势。菌丝体涉及的阶段
全球对化石资源耗竭及其环境影响的关注正在促使科学界从石油基于石油的转变为可持续化学物质。二苯甲酸(DPA)及其衍生物(DPE)在合成环氧树脂和多碳酸盐的合成中,成为基于生物和内分泌干扰素双酚A的基于生物的替代品[1,2]。进一步治疗后,DPA可以用作无异氰酸酯聚氨酯的前体[3-5]。此外,DPA在绘画配方以及抗菌棉织物中发现了一种添加剂[6,7]的添加剂[6,7] [8]。dpa通常是由无溶剂的冷凝液或在存在BrØNSTED酸催化剂的情况下通过苯酚和葡萄蛋白酸(或脱氟氨酸酯)的两个分子(或脱硫酸酯)的两个分子羟基烷基合成的。[9]脱甲酸和苯酚都可以源自木质核仁生物质[10-12]。葡萄干酸高度可用,廉价,被认为是美国能源部从生物质中衍生出的最有价值的化学物质之一[13,14]。苯酚的亲电芳族取代发生在Ortho - Para位置产生了两个立体异构体,P,P,P'-DPA具有高于O,P'-DPA的商业价值,因为它与Bisphenol非常相似,因此具有化学结构[15,16]。在许多应用中,葡萄干酸的烷基酯是
电池电力存储一直是达到可持续能源网络的主要策略之一。它们足以存储能源并稍后释放,支持大量可变的可再生电能。在这种情况下,锂空气电池(实验室)有可能成为高容量电池,其理论能量密度高于目前可用的锂离子。但是,它们在商业上仍然是不可行的。在过去的几十年中,随着稳定电解质,多孔阴极和催化剂的发展,实验室技术取得了巨大进展。尽管如此,对锂金属电极的保护受到了较小的关注,尤其是防御大气中存在的反应性物质,例如水和氧气。在这项工作中,合成了一个保护膜以保护金属锂阳极免受水的影响。使用聚四甲基乙二醇(PTMEG),4,4-二苯基甲基甲烷二异氰酸酯(MDI)和1,4丁二醇与甘油作为链扩展器的1,4丁二醇和甘油混合物进行合成。使用含碳纸作为阴极,金属锂作为阳极和0.1 mol.l -1硅氯酸锂(LICLO 4)组装的脂质锂氧(Li-O 2)电池测试合成的膜,并在二甲基硫代(DMSO)中以550 ppm的浓度为dimethyl smo(liclo 4)。此外,将电池与新型聚合膜的可环性与标准玻璃超细纤维分离器进行了比较。结果显示,与聚合物分离器在玻璃超细纤维分离器上组装的电池可环性更高。
摘要:尽管硫磺聚合物承诺具有独特的特性,但其受控的合成,尤其是在复杂且功能性架构方面,仍然具有挑战性。在这里,我们表明氧乙烷和苯基异硫氰酸苯二氮化的共聚物选择性地产生多硫二酰二酰二氧化物,作为一类新的含有分子量分布的硫酸盐,具有窄的分子量分布(m n = 5-80 kg/mol,用 ^ 1.2; mm n,max = 124 kg/mol)和高熔点;五个;氧乙烷和异硫氰酸盐的取代基模式。自核实验表明,苯基取代基,未取代聚合物主链的存在以及动力学控制的链接选择性是最大化熔点的关键因素。对宏链转移剂的耐受性增加和控制的传播允许合成双层晶体和两亲性二嵌段共聚物,可以将其组装成胶束和蠕虫样的结构中,并与水中的无律核心。相比之下,乙醇中结晶驱动的自组装会产生圆柱形胶束或血小板。