水下机器人被用作水下观察的一种手段。自1960年代以来,已经研究了水下机器人的研发[1]。最近,水下机器人被称为水下无人机,并传播到社会。在使用水下机器人作为水下地质和生物学调查等的工具时,使用市售的水下机器人是有益的。但是,当水下机器人是研发或教育的主题时,机器人所需的规格因目的而异。因此,有必要独立开发机器人。水下机器人有各种尺寸,从大到小,并且根据目的[2],[3]进行了研发。也有用于教育的水下机器人[4]。
摘要。自动驾驶水下车辆(AUV)是一种在世界和印度尼西亚广泛发展的水下车辆。这个AUV以商业用途甚至军事目的而闻名。AUV配备了各种传感器和其他设备,以支持在水下观察的活动。这些传感器的使用可以用作水下观察中实际条件的参数。在这个最终项目中,将创建一个基于智能手机的应用程序,以监视AUV上的遥测数据并向车辆添加安全系统。用户可以执行监视过程以确定水下条件,并在网络上配备数据安全系统,以确保在交付过程中确保数据安全性。本应用程序的工作原理是,用户使用国际数据加密算法(IDEA)算法访问数据库服务器上已确保的数据,以进行数据解密过程。使用该算法是因为它是最好的,最新的块状算法,很少使用。遥测数据将在智能手机上处理,以便用户可以在水下看到或监视活动,并可用于实际分析。从实验结果中可以是平均处理时间为0.00065秒,可以得出结论,使用具有IDEA算法的安全系统的遥测数据监视系统可以与AUV上的安全和监视遥测数据一起使用。关键字:AUV,IDEA,KRIPTOGRAFI,加密。
简历:2021 - 2022年大学期间,首次促进了伊拉斯mus蒙德斯·米尔(Mundus Mir)(海洋和智能机器人技术的硕士学位),始于图伦大学。在第一年提供的课程中,一个模块旨在建模和控制水下机器人。在这一领域,有许多非模型现象,实验的使用对于使学生既有一定数量的非常具体的实验知识(尤其是对于模型的识别),并概述了高度非线性系统是水下车辆的控制。在本文中,我们描述了两个实际的工作会议,在此过程中,学生首次操纵水下机器人,并识别模型的某些模型,并根据两个自由度(深度和帽子)进行控制。学生以学生评估这一教学。关键字:水下机器人技术,自动,建模,控制,实际工作。
海战环境正在迅速变化。美国海军正在适应形势,继续保持其蓝水优势,同时建设棕水能力。无人系统(如无人空中无人机)在应对新战场挑战中发挥着关键作用。无人水下航行器 (UUV) 正在成为海军的海上版空军无人机。与传统的舰载作战相比,UUV 代表了一种低端颠覆性技术,它能够承担越来越复杂的角色,从而打破战场熵的平衡。它们可以改善任务结果,并且成本仅为传统作战的一小部分。此外,麻省理工学院目前正在开发的长期水下电源将使 UUV 的射程和作战续航能力提高一个数量级。安装这些系统不仅能让 UUV 完成新的、以前不可能完成的任务,还能大幅降低成本。我探讨了 UUV 和长期水下电源对海军及其未来行动的财务和战略影响。通过研究当前的海军行动以及 UUV 可以补充或取代潜水员和船只的方式,我确定了使用 UUV 技术降低人员生命风险、降低成本和利用技术学习曲线的方法。我得出的结论是,随着 UUV 的广泛使用,可以立即节省大量成本,而目前的研究投资水平与 UUV 项目的风险和回报相比是不足的。
TEMA 具有多种外形尺寸,有两种部署类型,每种都有 3 米的幅宽,可根据现场条件选择。TEMA 使用 Geonics EM61 (EM61MK2-HP) 的高功率版本。HP 装置比标准 EM61MK2 将检测范围增加了 45% 到 80%。拖鱼主要有两种类型 - 深拖 TEMA-MK3,可在 3 至 100 米深的水中操作,以及 TEMA-Lite,可在极浅的水中漂浮和推动或拖曳,深度约为 40 米。TEMA-MK3 采用定制遥测系统。来自三个 EM 传感器以及所有辅助传感器的所有数据都通过单根双绞线或一根单模光纤电缆进行多路复用。通过使用光纤多路复用器 (MUX),TEMA 能够在数据收集期间将两个全 1080 像素高清视频流与多个标准清晰度流同时实时传输到水面,以及来自三个 EM 单元、两个高度计、航向和倾斜传感器以及 USBL 响应器触发信号的数据。光纤 MUX 还允许实时控制和上传来自 Tetra Tech 定制水下数码单反 (DSLR) 相机外壳的静态照片。
摘要 — 考虑到遥控机器人 (ROV) 在进行检查、数据收集和海底探索方面的重要性,本文提出了一种太阳能 ROV 解决方案。太阳能用于为 ROV/AUV 供电,经过适当设计的太阳能电池板可为 Blue ROV 提供 5 小时的性能。正在考虑使用小型 10Hp/12kg ROV 进行水下活动,其能量需求负载为 943.68W。为了满足这一需求,太阳能电池板安装在浮动平台上以产生必要的电力,并通过细致的计算确定太阳能模块的最佳数量和尺寸。为了确保连续运行,逆变器、充电控制器和电池组的尺寸也应相应调整。所提出的模型使用 COMSOL Multiphysics 环境优化了硅太阳能电池。COMSOL Multiphysics 中的模拟根据设计参数验证了结果,确认结果符合计算值。使用太阳能系统可提高运营效率,同时确保海上活动的长期可持续性。太阳能 ROV 代表着利用可再生能源在几内亚湾和其他地区进行环保、高效的水下勘探迈出了重要一步。
摘要:在现代反潜战中,有各种方法可以在二维空间中定位潜艇。为了更有效地跟踪和攻击潜艇,目标的深度是一个关键因素。然而,到目前为止,找出潜艇的深度一直很困难。本文提出了一种利用 DIFAR(定向频率分析和记录)声纳浮标信息(例如在 CPA(最近接近点)时或之前的接触方位和目标的多普勒信号)估计潜艇深度的可能解决方案。通过将勾股定理应用于目标和 DIFAR 声纳浮标水听器之间的斜距和水平距离来确定目标的相对深度。斜距是使用多普勒频移和目标的速度计算出来的。水平距离可以通过对两个连续的接触方位和目标的行进距离应用简单的三角函数来获得。仿真结果表明,该算法受仰角影响,仰角由声纳浮标与目标之间的相对深度和水平距离决定,精确测量多普勒频移至关重要。关键词:深度估计,DIFAR(定向频率分析和记录)声纳浮标,水下目标,多普勒效应
规范 本论文用英文撰写,包括前言,随后用挪威语和英语撰写摘要,符合挪威科技大学硕士论文指南。报告的介绍进一步详述了论文的背景和动机。提供了有关该主题的相关工作的小规模回顾。论文其余部分的大纲也包含在介绍中。论文的主要部分包括文献综述、数学模型描述、强化学习实施和模拟器设置的介绍、模拟结果和实验结果的介绍。最后,进行讨论和总结,并提供进一步工作的建议。源代码和报告的 PDF 版本应随提交以电子方式提供。
免责声明:该出版物是由加拿大国防部国防部的组织编写的。本出版物中包含的信息是通过最佳实践和遵守负责任的科学研究行为的最高标准得出和确定的。此信息旨在使用国防部,加拿大武装部队(“加拿大”)和公共安全伙伴,并且可以根据允许的方式与学术界,工业,加拿大盟友和公众共享(“第三方”)。第三方根据本出版物做出的任何依赖或决定的任何用途都应自行进行风险和责任。加拿大对由于出版物的任何使用或依赖而可能造成的任何损害或损失承担任何责任。
海洋能源结构通常由先进的复合材料制成,在使用过程中会受到极端海洋环境的影响。在极端海洋环境中,海水流和波浪反复加载结构,从而导致两种环境条件:水侵入和机械疲劳。在之前的研究中,这两种环境条件是按顺序应用的,其中复合材料样品经过老化,然后进行机械测试。为了了解动态载荷和水侵入对复合材料的综合影响,本研究涉及在水箱中对复合材料试样进行静态和疲劳四点弯曲测试。水箱的设计和制造适合 100 kN 或 250 kN 负载框架。水下疲劳测试的弯曲强度值、失效循环和失效模式结果将用于指导海洋能源结构设计。试样规模测试方法将用于扩大规模并为后续子组件测试和标准制定提供参考。根据知情标准设计海洋能源结构的好处是降低终生成本并提高可靠性和能源产量,最终实现可持续的低碳能源系统。