摘要 - 本文探讨了在边缘平台上部署基于Ma-Chine学习(ML)基于基于的对象检测和分割模型的问题,以实现用于自动水下汽车(AUV)的实时Caveline检测,用于水洞探索和映射。我们专门研究了三个ML模型,即U-NET,Vision Transformer(VIT)和YOLOV8,该模型部署在三个边缘平台上:Raspberry PI-4,Intel Neural Compute Stick 2(NCS2)和Nvidia Jetson Nano。实验结果揭示了模型准确性,处理速度和能耗之间的明确权衡。最准确的模型已显示为U-NET,其与联合(IOU)值相比为85.53 f1分数和85.38的交集。同时,分别在高功率和低功率模式下运行的Jetson Nano上的Yolov8模型实现了最高的推理速度和最低的能耗。论文中提供的全面定量分析和比较结果突出了重要的细微差别,这些细微差别可以指导水下机器人上的caveline检测系统的部署,以确保在水下洞穴探索和映射任务期间安全可靠的AUV导航。
摘要 - 在水下计算机视觉中,由于浊度和可变照明条件等环境因素,提高了Aruco标志物的特征提出了重大挑战。本研究探讨了旨在改善非杂种环境中Aruco标记检测性能的图像预处理策略。研究了三种不同的预处理方法:对自适应直方图均衡的增强,一种基于频率域的方法,重点是局部和全局处理,以及一种针对照明校正,降低降低,对比度增强和颜色调整的自动预处理技术。实验验证是为了使用实际水下图像评估这些策略的有效性。这项研究阐明了针对水下Aruco标记检测应用量身定制的有效预处理技术,为开发强大的水下计算机视觉系统提供了见解。索引术语 - 进行处理,视觉,Aruco,水下,ROV
描述 沉箱是一种安全、防水的舱室,通常用于水下施工。通过添加压缩空气使舱室防水。战略环境研究与发展计划 (SERDP) 项目 MR-2648“建立坚固的沉箱结构以抵抗水下未爆炸弹药就地爆炸的影响”研究了沉箱作为防爆盾的使用。计算机模拟发现,SERDP 团队开发的坚固沉箱结构 (RCS) 模型能够显著降低水下爆炸的影响。
摘要 - 在20世纪,数百万吨的弹药被倾倒到全球的海洋中。经过数十年的衰减,这些未探索的军械(UXO)的问题开始变得显而易见。为了促进通过例如自主水下车辆,获取代表性数据至关重要。但是,到目前为止,此类数据尚未公开可用。在本文中,我们提出了一个多模式同步数据的数据集,用于uxo水下的声学和光学传感。使用ARIS 3000成像声纳,GoPro Hero 8和定制设计龙门起重机,我们在受控的环境中录制了近100个轨迹和74,000帧的3种不同类型的UXO。是原始和极性转换的声纳框架,带注释的相机框架,声纳和目标姿势,纹理3D模型,校准矩阵等。该数据集可在https://zenodo.org/records/11068046上公开获得。可以在https://github.com/dfkiric/uxo-dataset2024上获得处理原始数据的代码。
深海环境的科学探索代表了水下技术的持续更新挑战。调查和研究与主要社会问题有关,例如生物多样性,全球变化,生活资源,矿产或化石水库,以及与人类活动对我们星球的影响有关的问题。主要依靠远程操作的深海车辆(ROV),实现水下研究任务取决于精确导航的技术能力,以提供可靠的视觉和空间信息,以进行精确的测量,以进行精确的测量,以收集各种性质,矿物质,矿物,水上,水上的代表性样品,并将其置于海上设备上。ifremer用于科学研究的ROV如图1所示。
希望他们了解电池的特性并加深思考。特别要考虑二次电池的输出和耐用性、包括 DC/DC 转换器的电源管理、热管理以及蒸发产生的氧气的处理等。
摘要:无论在国防还是民用领域,都需要对远距离水下目标进行准确、快速的识别。然而,数据缺乏、舰船工况等因素会显著影响水下声目标识别(UATR)系统的性能。由于海洋环境非常复杂,UATR严重依赖于特征工程,人工提取的特征在统计模型中偶尔会失效。本文提出了一种基于卷积神经网络和注意力机制的端到端UATR模型。该网络模型以原始时域数据为输入,结合残差神经网络和密连接卷积神经网络,充分利用两者的优势。在此基础上,加入通道注意机制和时间注意机制,提取通道维度和时间维度上的信息。经过对实测的四种舰船辐射噪声数据集进行实验,结果表明,所提方法在不同工况下均获得了97.69%的最高正确识别率,优于其他深度学习方法。
摘要:在水下成像中,实现高质量的成像是必不可少的,但由于诸如波长依赖性吸收和复杂的照明动力学之类的因素而具有挑战性。本文介绍了MEVO-GAN,这是一种新颖的方法,旨在通过将生成性对抗网络与遗传算法相结合来解决这些挑战。关键创新在于将遗传算法原理与生成对抗网络(GAN)中的多尺度发生器和鉴别器结构的整合。这种方法增强了图像细节和结构完整性,同时显着提高了训练稳定性。这种组合可以对溶液空间进行更有效的探索和优化,从而减少振荡,减轻模式崩溃以及对高质量生成结果的平滑收敛。通过以定量和定性的方式分析各种公共数据集,结果证实了Mevo-GAN在改善水下图像的清晰度,颜色保真度和细节准确性方面的有效性。在UIEB数据集上的实验结果非常明显,Mevo-GAN的峰值信噪比(PSNR)为21.2758,结构相似性指数(SSIM)为0.8662,为0.6597。