摘要:水产养殖产量处于创纪录的水平,估计在未来几年中会增加。但是,这种产量可能会受到病毒,细菌和寄生虫产生的传染病的负面影响,从而导致鱼类死亡率和经济损失。抗菌肽(AMP)是很小的植物,可能有望替代抗生素,因为它们是动物对各种病原体的第一道防线,并且没有负面影响。它们还显示了其他抗氧化剂或免疫调节功能等其他功能,这使它们成为水产养殖的强大替代品。此外,AMP在天然来源中高度可用,并且已经用于牲畜农业和食品行业。光合海洋生物可以在各种环境条件下以及在极具竞争性的环境下生存,这要归功于它们的柔性代谢。出于这个原因,这些生物代表了一种强大的生物活性分子来源,即包括AMP在内的营养素和药物。因此,在这项研究中,我们回顾了来自光合海洋生物体的AMP的当前知识,并分析了它们是否适合在水产养殖中使用。
简单总结:水产养殖业是食品生产和全球贸易的重要部门。过去几年中,几种新方法已在不同鱼类物种中建立了基因改造。这些方法表明,包括 CRISPR/Cas9 技术在内的基因编辑工具非常强大,并广泛应用于水产养殖业。不同鱼类及其病原体的基因组中的有针对性和精确的修改为不同的水产养殖部门带来了根本性的改善,包括抗病性、生长或繁殖。这些新技术提供了可行的分子装置,可以促进鱼类和甲壳类动物功能基因组学和治疗应用的发展。总之,通过特定的基因改造方法在水产养殖中创造突变动物是现实。
过去几年,爱尔兰水产养殖业所处的全球经济和环境条件发生了巨大变化。在所有行业发展规划中,碳净零排放运动成为主流,英国脱欧的影响,新冠疫情和乌克兰战争持续带来的经济动荡,都对该行业的运营方式和发展方向产生了影响。因此,这是一个总结这些因素以及过去几年经验教训的好时机,以便为爱尔兰水产养殖业提供所需的战略眼光,既能提高对外部威胁的抵御能力,又能利用对低碳、可持续和健康海产品日益增长的需求。
介绍在2019年,政府启动了水产养殖战略,为年度水产养殖收入提供了可持续的增长途径。该战略朝着可持续,富有成效,韧性和包容性水产养殖行业的四个成果建立,并在五年内将政府机构授予36项行动以提供这些成果。本实施计划报告了2022年的进度,并规定了2023年将采取哪些代理商来实施该策略。2022比过去两年更稳定,并且从Covid-19的影响中继续恢复。尽管如此,市场,货运和行业仍在继续导航的货物和劳动力方面仍存在一些挑战。劳动力的可用性一直是Aotearoa和全球水产养殖和其他行业的特殊挑战。新西兰水产养殖的代表组织已制定了一项行动计划,以解决当前的劳动力短缺,并在战略上考虑未来的劳动力需求。我们将在2023年整个新西兰支持新西兰,以实施其劳动力行动计划。近年来已经证实,海洋热浪将对该行业持持持续的风险,贻贝和鲑鱼业务在2022年受到影响。我们在2023年的工作将加深我们对气候变化为水产养殖带来的威胁的理解,我们将与该行业一起工作,以确定适应这些挑战的实际方法。这项工作将在2023年继续。•渔业新西兰发布了第一份关于水产养殖环境表现的年度报告。已经取得了进步,以确定实现水产养殖战略目标所需的关键投资,并通过加速水产养殖战略投资治理小组,使行业和研究提供商与这些目标保持一致。从2022年开始,要反思的一些主要积极进展是:•在库克海峡获得新西兰第一个开放式鲑鱼农场的同意(指出该同意正在上诉)。•Te Moana-a-toi的皇冠宪报空间提供和解,并通过了2022年《毛利人商业水产养殖修正案》,以进一步交付官方的和解义务。•渔业新西兰更新了马尔伯勒声音中鲑鱼农场的底栖最佳管理实践指南,并完成了开放海洋水产养殖的选址和管理指南,涵盖了底栖和水质效果。•持续进展取得了一种全面的水产养殖生物安全方法。•初级产业部的可持续食品和光纤期货基金投资于一个项目开发原型的陆基流通鲑鱼农场,包括对Sockeye Salmon Farming的试验。•机构提供了有关如何在资源管理系统改革中解决水产养殖的建议,并在2022年11月将其纳入了自然和建筑环境法案和空间规划法案中。
除非另有说明,否则本演示文稿的再利用均根据 CC BY 4.0 许可授权。对于任何不属于欧盟的元素的使用或复制,可能需要直接向相应的权利持有人寻求许可。
图 1 繁殖种群由繁殖季节产卵的亲鱼组成,这些亲鱼会生成数个(数百个)全同胞和半同胞家族,并在不同的水箱中饲养。当这些个体长到足够大以进行物理标记时,它们会进行单独识别,以在整个周期内保持谱系可追溯性。一些带标记的动物会作为选择候选者留在繁殖核心中,直到它们达到商业重量为止。其他带标记的动物组(选择候选者的全同胞和半同胞)代表繁殖核心中的所有家族,它们会被送去进行环境基因型、产品质量和抗病性测试,以评估具有表型的训练基因型(即成为训练种群)。所有带物理标记的动物都会进行采样并使用 SNP 面板进行基因分型。通过基因组评估方法(例如 GBLUP)联合分析来自训练种群和选择候选种群的谱系、表型和基因型信息,以预测 GEBV,进而用于做出下一繁殖季节的选择决策,并通过繁殖加速将优良基因转移到商业农场
摘要:水产养殖是世界上生长最快的粮食领域,可为人类食用而产生超过一半的鱼类。水产养殖饲料包括从沙丁鱼等野生鱼类中提取的纤维化和油炸油,并带来生态,粮食安全和经济弊端。微藻,酵母,真菌,细菌和其他替代成分在提供蛋白质/氨基酸,脂质或omega-3来源和生物活性分子来源的水上成分中表现出了有希望的成分。本评论文章讨论了文献经常缺乏数据的问题,例如最近使用微生物,技术创新,挑战和机会来发展水产养殖饮食的低环境足迹。这些成分通常需要新颖的加工技术来提高消化率和鱼类的生长并减少抗逆转因素。这是对填充的重要差距,因为微藻是饲料中最常用的有机体,尤其是作为饮食补充剂或与其他成分混合的。生产,加工和配方步骤可能会影响营养品质。需要逐步策略来评估这些成分以供饲料应用,在本文中,我阐明了评估营养和环境反应指标的逐步关键方法,以使用这些微生物来开发高度可持续的含水饲料,这将指导对这些新颖成分的更为明智地包含这些新颖的成分。
水产养殖取决于微生物,因为它们是自然存在的,并且可以目的添加以实现各种目的。此外,某些细菌可能会避免鱼类和幼虫免受疾病的侵害。因此,在水产养殖栖息地中测量和修改微生物种群至关重要,以提高水质并停止传染病的发展。在几年内,水产养殖系统可以有效地管理生态系统过程,并使用微生物种群监测水质。为了彻底了解有利的和不利的水产养殖系统,应彻底研究微生物体。,但是必须正确地开发和管理这些微生物。与此类似,使用益生菌来控制微生物组可能会减少对水产养殖中抗生素的需求。最近的研究表明,益生菌细菌可能会显着降低患病鱼幼虫的死亡率,并可以控制活饲料中的鱼类病原细菌。但是,缺乏对重要微生物相互作用的知识,这些系统的整体生态现在限制了水产养殖中微生物群的有效调节。水生自然环境的微生物种群迅速适应环境变化。这些变化可能是适度的,以某些代谢途径的激活或失活而出现,或者可能会对微生物群落的一般化妆和活动进行修改。一个水样品可用于研究基因组和转录组组成的组合[1-3]。现在,高通量测序(HTS)技术已经如此迅速地进步,可以使用全面的系统生物学策略来监测微生物水社区的变化。
乳酸菌(LAB)可以通过竞争营养物质或产生一种或多种具有抗菌活性的代谢物(如细菌素)来抑制许多细菌,特别是水产品中的特定腐败菌(SSO),在水产品生物保鲜中起着至关重要的作用。乳酸菌属和乳球菌属是水产品保鲜中最常用的乳酸菌。基因编辑工具的改进对于开发具有优良水产品生物保鲜性能的新型乳酸菌菌株尤为重要。本文综述了目前最广泛使用的基于CRISPR/Cas的基因组编辑工具在乳酸菌属和乳球菌属中的研究进展,介绍了基于同源重组和碱基编辑器的基因组编辑工具。然后,简要回顾了CRISPRi在转录调控方面的研究现状。本综述可为基于CRISPR/Cas的基因组编辑工具在其他乳酸菌物种中的应用提供参考。