C. 项目位置和背景信息 州:密西西比州 县/教区/自治市镇:麦迪逊县 城市:里奇兰 场地中心坐标(纬度/经度,十进制格式):纬度。32.456606°,经度。-90.174815° 通用横轴墨卡托坐标:15 最近水体名称:Haley Creek 流域名称或水文单元代码 (HUC):03180002
推荐引用 推荐引用 Wei, Z., Wei, Y., Liu, Y., Niu, S., Xu, Y., Park, J., & Wang, J. (2024). 生物炭基材料作为石油烃污染土壤和水体的修复策略:性能、机制和环境影响。环境科学杂志 (中国), 138, 350-372。https://doi.org/10.1016/ j.jes.2023.04.008
从2024年10月28日至11月1日,疫苗诱饵将在林区,水体附近,偶尔在垃圾桶附近分发。来自MinistèredeL'Enigonnement的团队,De la Lutte Contre Les Changements Climatiques,De la Faune et des Parcs将覆盖近380平方公里的面积,分布约27 000个疫苗诱饵。
C. 项目位置和背景信息 州:阿肯色州 县/教区/自治市:普拉斯基 城市:杰克逊维尔 场地中心坐标(纬度/经度,十进制格式):纬度 34.8868°,经度 -92.1304 ° 通用横轴墨卡托投影:单击此处输入文本。最近水体名称:Rocky Branch 流域名称或水文单元代码 (HUC):08020402
孟加拉国的渔业归因于该国水体的性质。就鱼类栖息地的性质而言,孟加拉国渔业可以大致分为内陆水,河口或沿海水和海水区。内陆水生栖息地主要由淡水河流,雨季及其领土运河(Khal)(Khal)造成的大量洪泛区(Khal)主导。死河还在该国西南地区创建了牛弓湖(Baor)。孟加拉国东北部也有深层抑郁症,称为Haor。一个名为Kaptai Lake的大型人造湖也是由吉大港山区的水电大坝形成的。内陆水体有1,288,222人的人造池塘和水库,总面积为305,025套。孟加拉国在其南部边界上受孟加拉湾的边界。该国的海岸线长约710公里,海上独家经济区(EEZ)的面积估计为70,000平方英尺。km。在2009年至2010财政年度,该国总共生产了289万吨鱼。中有17.85%是从海中生产的,而内陆培养部门的鱼类为46.62%,内陆捕获渔业部门的鱼类为35.53%。
州:爱达荷州 县/教区/自治市镇:克拉克 城市:杜波依斯附近 站点中心坐标(纬度/经度,十进制格式):纬度 44.12244 °,经度 -112.55552 ° 通用横轴墨卡托投影:UTM Zone 12,东向:371473.364073,北向:4883904.691515 最近水体名称:Warm Springs Creek 流域名称或水文单元代码 (HUC):170402150404 Lower Crooked Creek
该提案解决了对廉价和便携式探测器评估水体(包括天然来源和饮酒用品)中的人均和多氟烷基物质(PFA)的关键需求。pfas,通常在工业和消费产品中用于其水和石油的特性,在环境中持续存在,并对人类构成健康风险,影响生长,繁殖,甲状腺功能,免疫系统和肝脏健康。当前的PFA检测方法是昂贵且耗时的,限制了资源约束设置或现场监视中的可访问性。便携式传感器提供了有前途的解决方案,以低成本提供快速的现场检测。该提案强调了检测天然水体中PFA污染以评估环境影响和指导补救工作的重要性。确保饮用水供应的安全对于公共卫生至关重要,需要有效的检测方法迅速识别PFAS污染。通过为PFA检测开发低成本的便携式传感器,该提案旨在弥合当前检测功能的差距,从而使天然水源和饮酒系统中PFAS污染的广泛和及时评估。这项创新有可能通过促进PFAS污染的早期检测和缓解措施来增强环境管理和保护公共卫生。
22公顷花岗岩采石场位于塔玛谷(Tamar Valley)内。与该采石场相关的栖息地包括林地碎片,树篱,种类多样的草原,荒地和农业牧场。恢复该地点是包括阔叶林地,水体和酸草地/荒地。该网站的一部分被指定为“ Hingston down Quarry and Consols sssi”,以表彰其地质利益。国家名称(SSSI,
近年来,过度开采矿石和工业发展是环境中重金属释放的主要因素。结果,粮食作物和水体受到金属污染,可能对人类和其他生物的健康产生多种不利影响。这些金属和准金属,如锌、铜、锰、镍、铬、铅、镉和砷,会扰乱生物体内代谢物合成的生化途径,并导致不同疾病的病因。微生物包括细菌、古细菌、病毒和许多单细胞真核生物,它们可以跨越三个生命域——古细菌、细菌和真核生物——一些微生物,如蓝藻,在重金属的生物吸附率方面表现出很高的效率。蓝藻适合生物修复,因为它们可以在恶劣的环境中生长,对周围环境的负面影响较小,而且管理成本相对较低。蓝藻的结构没有显示出广泛的内部结合膜,因此它可以直接利用生理机制从污染地点吸收重金属。这种生化组成适合管理和生物修复污染环境中的重金属浓度。本综述旨在探索蓝藻在水体中重金属和准金属的生物修复潜力。此外,我们还确定了提高生物修复效果的前景。