机组性能测试 LG 开始推广风冷式冷水机组和水冷式冷水机组的工厂性能测试,以表明我们对自己设计和制造的产品负责。性能测试的好处包括验证性能、预防操作问题以及确保顺利启动。只有在实验室或实验室级设施中进行的性能测试才能确认特定冷水机组的性能和运行情况。大多数工厂性能测试进展顺利。如果出现问题,LG 人员很容易纠正问题,并将冷水机组运到工作现场。当要求进行工厂性能测试时,测试可以在指定的设计条件下进行。测试设施能够控制环境测试条件,以向客户保证我们的冷水机组将按预期运行。
近年来,人们认识到,应用被动安全系统(即利用对流和重力等自然力运行的系统)有助于简化新核电站设计,并可能提高其经济性。此外,1991 年召开的国际原子能机构“核电安全:未来战略”会议指出,对于新核电站,“使用被动安全功能是实现简化和提高基本安全功能可靠性的理想方法,应在适当情况下使用”。考虑到基于自然循环的被动系统的驱动力较弱,必须采用仔细的设计和分析方法来确保系统发挥其预期功能。
用于发电和海水淡化。设计始于 1994 年中期,计划于 2005 年左右建造。主容器位于外部安全容器中,半满水,设计压力与主容器相同。紧急情况下的余热去除是通过容器壁到安全容器中的水中,然后从那里通过热管到安全壳外的冷却器。内部增压器使用氮气加压,使用压力驱动喷雾器,没有加热器。热交换器是一次通过螺旋式的,产生 30 C 的过热蒸汽。有一个蒸汽喷射器来驱动安全壳喷雾系统。一种新的控制棒驱动机构 (CRDM) 正在开发中,其运动比之前的韩国磁力千斤顶类型更精细。燃料元件是六角形的。预计将开展广泛的研究和开发计划
7 声音数据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 声压谱。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 声压谱安静模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 声功率谱。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20
本出版物全面回顾了先进水冷反应堆管道可靠性参数评估的良好实践。良好实践是指管道可靠性分析中预期的流程和分析任务,以使结果真实地反映管道结构完整性。管道可靠性是一个复杂的课题,已从各种技术角度进行了广泛的研究(例如从设计规则的制定到材料降解减缓实践的制定)。为了协助成员国应用适当的方法对先进水冷反应堆的管道故障率进行分析,国际原子能机构组织了一个为期三年的协调研究项目,题为《先进水冷反应堆管道故障率评估方法》(2018-2021 年)。本出版物基于使用不同的先进方法在多种分析环境中应用并响应不同国家规范和标准的要求时获得的技术见解。
这不是国际原子能机构的官方出版物。材料未经国际原子能机构正式审查。所表达的观点不一定反映国际原子能机构或其成员国的观点,仍由撰稿人负责。尽管我们已尽最大努力保持本出版物所含信息的准确性,但国际原子能机构及其成员国对使用本出版物可能产生的后果概不负责。使用特定的国家或地区名称并不意味着出版商国际原子能机构对这些国家或地区的法律地位、其当局和机构或其边界的划分作出任何判断。提及特定公司或产品的名称(无论是否注明为注册)并不意味着有任何侵犯所有权的意图,也不应被解释为国际原子能机构的认可或建议。
先进水冷反应堆热工水力关系研究协调小组 (CRP) 于 1995 年成立,总体目标是促进信息交流和合作,建立一套一致的热工水力关系,适用于分析先进水冷反应堆的性能和安全性。对于先进水冷反应堆,一些关键的热工水力现象包括临界热通量 (CHF) 和 CHF 后传热、低流量和低压条件下的压降、自然循环的流动和热传输、存在非冷凝物时的蒸汽冷凝、大型水池中的热分层和混合、重力驱动的再淹没以及潜在的流动不稳定性。
换流变电站的核心是使用 8.5 kV、125 mm 晶闸管的 H400 系列阀门。该项目的极高环境温度(高达 55°C)带来了巨大挑战。由于阀门有源部分(晶闸管中的硅)的温度需要限制在 90°C,因此水冷装置需要比标准 HVDC 链路更高的冷却剂流速。阀门内的冷却管布置改为并联布置,以增加进入换流器的总流速。这需要为 HVDC 安装建造有史以来最大的水冷装置。