粗粒(CG)力场参数是使用真空中纤维素Iβ的原子分子动力学模拟得出的(0%的水分含量),并使用Gromacs软件[5]和CHARMM力场进行的水(95%水分含量)溶剂(95%的水分含量)[6]。72使用自下而上的粗粒方法将葡萄糖残基映射到一个CG位置:在存在水存在下,使用雨伞采样确定了100个纤维素表面之间的非键相互作用,以计算平均力的潜力(PMF)。势能被视为真空模拟中PMF的近似值,因为缺乏水减少了对自由能的熵贡献。使用Boltzmann倒置参数化键合的相互作用,以从与CG位点相对应的原子组之间的键长和角度的概率分布来计算PMF。使用LAMMPS软件进行了粗粒纳米纤维素组件的MD模拟[7]。进行了机械应力MD模拟,以确定具有强力场参数的CG纳米纤维素组件的拉伸模量,其水分含量为0%和95%。
1。与粗,干燥的散装剂混合有助于提高孔隙度并减少传入材料中的水分。如果在一个现场接受的材料已经厌氧且有臭的,则需要与粗干燥的散装剂及时合并,C:N比约为30:1。干燥的散装剂将吸收任何多余的水分,降低浓度材料的浓度并增加孔隙率,从而可以立即氧气穿透。这也是进水和散装代理的良好预防习惯。2。转动围栏和桩对于重新分布水分,提供充气和保持温度非常重要。最佳旋转频率取决于最初混合了材料,C:n比,任何现有的厌氧条件和孔子的孔隙率。通常,在堆肥过程的活动阶段,必须更频繁地转动式摩托车,尤其是在水分含量太高的情况下。另一方面,过多的转弯可能会降低粒径,从而降低堆肥和气流。3。强制曝气系统通过某些堆肥设施利用,以增加转弯之间的氧气流量。基本上,这些系统将空气吹入围栏。4。尺寸尺寸均匀地促进了氧气扩散和自然空气对流。无论使用标准的绕组还是强制曝气绕组系统,这种做法都是有帮助的。
我们评估了在野外条件下估计驼鹿身体成分的技术。通过生物电阻抗分析 (BIA) 估计了 2 只驼鹿的体内水分,并通过尿素稀释估计了其中 1 只的体内水分。这些动物被屠宰,并对组织样本的蛋白质、水分、脂肪和灰分含量进行了分析。此外,还从其中 1 只身上解剖出腓骨肌群并进行相同的分析。化学测定的无食物体 (IFB) 脂肪测量值为鲜重的 15.4% 和 13.1%,IFB 水分含量范围为 58.6% 和 62.0%。在我们之前的估计值上再增加一个样本,我们确定腓骨肌脂肪的估计值与 IFB 脂肪有关,但有两个样本的收集方式与其余样本不同。尿素稀释法测定的空体水空间 (EBWS) 被证明不能精确估计 IFB 水量,因此我们终止了对这项技术的进一步研究。剃毛皮肤、去皮空胴体和空内脏中的脂肪百分比随 IFB 脂肪百分比线性下降,这表明这些身体成分中的脂肪被同时利用,这与长期以来认为驼鹿脂肪动员顺序的观点相矛盾。化学测定的 IFB 脂肪和水分含量与许多因素显著相关,包括 BIA 参数、活重 (LW)、总长度 (TL) 和细胞压积 (PCV)。然而,并非所有模型都包括 BIA 参数,在我们的分析中,LW 和 TL 似乎是身体成分最重要的预测因素。驼鹿的活重 (LW) 最好通过结合总长度、心脏周长和状况等级评分的线性模型进行预测。
产品说明Zedry®/VOC盖由金属盖组成,涂有无溶剂,热固化的Getter层,该层设计为高容量水分和挥发性有机化合物(VOC)的吸收。盖子材料,形状,尺寸和饰面由客户指定:SAES根据其特定设计,电镀层以及与最终设备包装的任何技术约束相关的水分和VOC量优化的Zedry/voc盖。Zedry/voc盖设计用于光电和微电器设备包装,包括密封型和半磨砂体系结构。沉积在盖上的Zedry/voc Getter涂层可作为水分和VOC的可逆Getter(例如甲基 - 乙基酮或甲苯):在设备密封之前,必须在100°C-1220°C下用热过程激活。Getter的高分解温度可确保与接缝或激光密封过程完全兼容,而不会影响功能性能。
USDA干旱监测仪显示,整个加利福尼亚州各个程度的普遍干旱(图4)。大多数地区由于2024年下半年的干燥长期而在严重(D2)或极端(D3)干旱中。燃料水分截至1月26日(图5),由于最近在南海岸,中央海岸内部和中部山谷中润湿的雨水,山区有雪。这将使燃料在接下来的1-2周内不易受到点火的影响。下周有可能在南加州穿越南加州的另一个风暴系统,尽管此时的信心仍然很低。如果预测变为较干燥的模式,则燃料可能会变干,并变得更容易受到点火的影响。如果沉淀得以实现,则燃料将在更长的时间内不利于点火。由于过去几个月缺乏降水,活燃料湿度仍然远低于正常水分(图6)。燃油水分预计在最近的降雨中将在短期内增加。然而,长期趋势不确定,因为关于这种湿润的模式将存在高度的不确定性。