植物中的水势:海岸红杉 (Sequoia sempervirens) 高达 116 米,是世界上最高的树 (a)。植物根部很容易产生足够的力量 (b) 压弯和折断混凝土人行道。水势是水中势能的量度,或给定水样与纯水(在大气压和环境温度下)之间的势能差。水势用希腊字母 ψ (psi) 表示,以压力单位(压力是一种能量形式)表示,称为兆帕 (MPa)。纯水势 (Ψ w pure H2O ) 被指定为零值(即使纯水含有大量势能,也会忽略这些能量)。因此,植物根、茎或叶中水的水势值以 Ψ w pure H2O 表示。植物溶液中的水势受溶质浓度、压力、重力和称为基质效应的因素的影响。可以使用以下方程将水势分解为其各个组成部分:
2. 扩散和渗透调查实验室:学生使用琼脂块探索表面积与体积的比率。他们探索三种尺寸的扩散速率并计算表面积与体积的比率以探索细胞小的原因。浸没在碘溶液中的透析管中的葡萄糖淀粉溶液的演示使学生能够观察扩散和渗透并使用证据来支持有关分子运动的预测。学生设计一个实验,使用透析管模型来确定各种植物组织的水势。实验涉及以图形方式确定植物细胞中溶液的摩尔浓度和水势的计算。还将应用描述性统计数据来确定数据点的显著差异。(大创意 2,科学实践 1、3、4、5、6)CR11
微生物刺激素可作为生物和非生物胁迫保护剂和生长促进剂,在气候变化的背景下,在农业中也变得越来越重要。寻找能够在各种田间条件下帮助减少化学投入的新产品是新的挑战。在这项研究中,我们测试了两种具有互补作用模式的微生物生长促进剂(Azotobacter chroococcum 76A 和 Trichoderma afroharzianum T22)的组合是否可以帮助番茄适应最佳水和氮需求减少 30% 的情况。在最佳水和营养条件下,微生物接种物可提高番茄产量 (+48.5%)。此外,微生物应用提高了胁迫条件下的叶片水势 (+9.5%),降低了叶片整体温度 (-4.6%),并增加了地上部鲜重 (+15%),表明该组合可在有限的水和氮供应下充当植物水分关系的积极调节剂。在胁迫条件下施用 A. chroococcum 76A 和 T. afroharzianum T22 可显著增加根际微生物种群,这表明这些接种物可增强土壤微生物丰度,包括本地有益微生物的丰度。采样时间、有限的水和氮状况以及微生物接种均会影响根际土壤中的细菌和真菌种群。总体而言,这些结果表明,所选微生物群落可作为植物生长促进剂和胁迫保护剂,可能通过土壤微生物多样性和相对丰度的功能性变化触发适应机制。