获得的经验 这种经验将为您提供新的技能和知识: • 了解如何获取和重建医学图像 • 提高超声脉冲和光束模拟的编码技能 • 3D 扫描、CAD 设计和 3D 打印定制探头装置 • 进行实验性超声测量和图像 • 分析数据(来自水听器、阻抗分析仪和扫描仪)以比较方法 • 应用机器学习方法来加速输出 • 解决问题并创建新的硬件和算法解决方案 • 提高沟通技巧(写作和口语/演示)
“ARD 进行的测试促进了潜艇系统和功能的诸多改进,包括推进器、船首区域设计、处理、声纳系统等,”测试运营经理 Steve Finley 说道。“湖上有四个主要测试场。最古老的一个是浮力车辆测试场,它由下拉装置组成,将模型拉到湖底以获取船上数据。LSV 测试场类似于全尺寸潜艇测试场;它有两个垂直阵列,LSV 在它们之间运行,用于进行辐射噪声测量。ISMS 测试场是世界上最复杂的水下结构。它由 158 个水听器和 36 个投影仪组成——所有这些都是为了在必要时进行目标强度测量
本里程碑的目的是尝试通过使用一种称为“magnomic”方法的独立技术来证实基于 NPL 主标准激光干涉仪的水听器校准。该方法利用在 10 MHz 换能器的平面波区域内传播有限振幅声波的理论建模。本文档详细描述了所进行的理论和实验工作的多个方面。介绍了用于预测各种测量位置的声波形的平面波算法。这项工作的一个重要方面是通过波束绘图研究换能器在距换能器表面不同距离处产生的压力分布,这项工作已证明与所需的平面波行为存在显著偏差。还介绍了“magnomic”校准方法其他方面的实验研究结果。
本文旨在描述一种使用海军声纳浮标在公海定位导弹撞击位置的新技术。图 1 显示了典型的海军 ASW 声纳浮标,这是一种空投的消耗性 VHF 无线电,可将其下方水听器接收到的水下声学信号中继到头顶上的飞机* 这种导弹撞击定位系统具有成本低、便携和高精度的优点。基本上,声纳浮标监测导弹撞击海面的水声信号,并使用固定的海底应答器作为声纳浮标的大地参考* 迄今为止,我们使用飞机投下的远距离炸药作为水面声纳浮标和海底应答器之间的声学连接。该声纳浮标系统的撞击精度可以达到 0.1 NM。将来,随着硬件的进一步发展,主动声呐浮标的使用将不再需要远距离电荷参考系,升级后的 SMILS 精度将达到 250 英尺。
海军负责遵守一系列适用于海洋哺乳动物和其他海洋保护物种的联邦环境法律和法规,包括《濒危物种法》(ESA)和《海洋哺乳动物保护法》(MMPA)。作为与这些法案相关的监管合规流程的一部分,海军负责实施海洋物种监测计划,以评估舰队和系统司令部(SYSCOM)军事准备活动的潜在影响,这些活动涉及主动声纳和爆炸物和爆炸弹药的水下爆炸。被动声学监测(PAM)是一种行之有效的方法,可通过水下麦克风(称为水听器)检测和分类发声活跃的海洋哺乳动物以及多种鱼类。然而,解释通过这些方法收集的原始数据并非易事,通常需要主题专家的参与。需要开发、测试和评估适合具有相对较少或没有主题专业知识的用户的新的或现有的 PAM 信号处理系统。
位于美国弗吉尼亚州圣克罗伊岛的海军水下跟踪靶场只是这些设施之一。该水下跟踪设施由海军承包商于 20 世纪 60 年代建造,在安装时遭受了一些损坏,并且由于靶场设施遭受雷击而进一步损坏,雷击成功进入海底电缆并严重损坏了安装在 3,000 英尺深处的水听器跟踪阵列。第一次雷击损坏发生在 1968 年。对一些跟踪阵列和岸上的防雷系统进行了维修。防雷系统于 1972-3 年进行了维修。第二次雷击损坏发生在 1973 年 9 月,损坏了 11 个跟踪阵列中的 5 个。此外,1973 年 5 月在靶场上作业的一艘潜艇对几个已安装的系统造成了损坏。1973 年 11 月,FPO-1 的任务是评估损害情况并规划所有水下阵列的修复行动,以及保护靶场建筑免受进一步雷击。
摘要:在现代反潜战中,有各种方法可以在二维空间中定位潜艇。为了更有效地跟踪和攻击潜艇,目标的深度是一个关键因素。然而,到目前为止,找出潜艇的深度一直很困难。本文提出了一种利用 DIFAR(定向频率分析和记录)声纳浮标信息(例如在 CPA(最近接近点)时或之前的接触方位和目标的多普勒信号)估计潜艇深度的可能解决方案。通过将勾股定理应用于目标和 DIFAR 声纳浮标水听器之间的斜距和水平距离来确定目标的相对深度。斜距是使用多普勒频移和目标的速度计算出来的。水平距离可以通过对两个连续的接触方位和目标的行进距离应用简单的三角函数来获得。仿真结果表明,该算法受仰角影响,仰角由声纳浮标与目标之间的相对深度和水平距离决定,精确测量多普勒频移至关重要。关键词:深度估计,DIFAR(定向频率分析和记录)声纳浮标,水下目标,多普勒效应
声纳校准和训练系统 (SONCAT™) 是一个真正的模拟目标系统,用于海上声纳测试和声纳操作员训练。SONCAT™ 是一个完善的系统,已被各海军和校准站点使用了 20 多年。其中最突出的用户是北约 FORACS 站点,他们负责确保成员国的船只具有校准的声纳系统。该系统的主要部分是一个坚固而紧凑的浮标,便于操作和快速部署和回收。这使得操作 SONCAT™ 系统所需的时间和资源最少,从而能够频繁操作该系统以确保战斗准备就绪。SONCAT™ 系统是过去几年进行几次重大升级的结果。现在,我们提供一款完全重建的产品,以我们内部开发的 SONAR3™ 作为系统的核心,提供最先进的电子设备、硬件和软件。它的众多新功能包括全数字信号处理、增强的滤波器设置以及更快、更详细的水听器采样。此次升级使 SONCAT™ 成为一个更加准确和逼真的系统。从 2021 年中期开始发货的型号还包含多项升级和用户改进,重点关注用户友好性。
摘要 — 本研究介绍了一种有前途的微加工技术,该技术采用无硅 (SON) 工艺在深度为 1 μ m 的真空腔上形成厚度为 2 μ m 的连续单晶硅膜。利用 SON 工艺,已在 8 英寸硅晶片上展示了高填充因子压电微机械超声换能器 (pMUT) 阵列,腔体宽度范围从 170 μ m 到 38 μ m。器件采用 15% 钪掺杂氮化铝作为 pMUT 的压电层,适用于空气耦合和水耦合应用。空气耦合 pMUT 的峰值位移频率为 0.8 至 1.6 MHz,Q 因子在 120 至 194 之间。水耦合 pMUT 阵列显示,在距离 20 毫米的 DI 水中,针式水听器测量的传输压力范围为 0.4 至 6.9 kPa/V,峰值频率在 5 至 13.4 MHz 之间,分数带宽为 56% 至 36%。本文提出的压电 SON 工艺有可能在低成本、高产量 pMUT 制造中获得关注。