本文研究了由于Jeffrey杂交纳米流体流动而导致的太阳能储能,该流通过多孔介质用于抛物线槽太阳能收集器。在悬浮水基传热液中,还遇到了石墨烯和银纳米颗粒的热疗法和布朗运动的机制。旋转的微生物具有在纳米流体混合物中向上移动的能力,从而增强了纳米颗粒的稳定性和悬浮液中的流体混合。管理方程式的数学建模使用质量,动量,能量,浓度和微生物浓度的保护原理。非相似变量被引入尺寸管理方程式,以获取非量纲的普通微分方程。实施现金和鲤鱼方法来求解非二维方程。还使用Levenberg Marquardt算法为非维度的方程开发了人工神经网络。对应于影响纳米流体流和传热的不同参数的数值发现。观察到热曲线会随着达西和福切氏症参数的升级而增强。和Nusselt数字随着Deborah数字和延迟时间参数的升级而增强。熵生成可以随着Deborah数字和延迟时间参数的增强而降低。太阳能是最好的可再生能源。它可以满足行业和工程应用增长的能源需求。
由于服务器和数据中心级别的功率密度不断增加,高性能计算服务器的热管理正成为数据中心冷却行业面临的普遍挑战。高效散热也与电子封装可靠性直接相关。由于水基冷却剂的热性能更高,直接芯片液体冷却等改进的冷却技术可以满足不断增长的冷却需求。使用动态冷却概念,实验研究了一种进一步提高直接液体冷却 (DLC) 效率的方法。开发了一种流量控制装置 (FCD),用于使用陶瓷加热器调节流向四个定制热测试车辆 (TTV) 的流量。TTV 组件被放置在标准 19 英寸信息技术设备 (ITE) 机架的四个不同高度,位于安装有冷板的测试夹具中。每个 TTV 的流量调节是基于每个 TTV 的功耗进行的。每个 TTV 的功耗因整个机架中各种非均匀功率分布值而变化。分析了冷却剂入口温度和流速对 TTV 温度和机架压降的影响。结果表明,TTV 上的温度更加均匀,最大功率时 TTV 上的最高温度降低。还通过将所得结果与已发表的文献进行比较,分析了温度均匀性对封装级可靠性的影响。
Marlite数字印刷的Artizan™FRP面板W/ Bluesky™高级完成…技术数据2017产品Artizan Fiberglass增强型Polyester(FRP)面板具有革命性的Bluesky Advanced Advanced Advancition,采用高分辨率数字成像,具有可控的,低效率的,低的,低速,水性固定,水基级别UV Cure-uv-cur-cucure-cure-cucure-cure-cucure-cucure-cucure-cucure-cucure-cure-cucure-cure-cur inves。Artizan FRP面板具有人造木制,砖,石头,水泥或其他设计,复制真实材料或抽象印刷品。面板还具有照片,插图,徽标和矢量图形。Bluesky高级精加工过程在坚韧的卫生表面上产生最佳的图形再现。功能和属性•用令人兴奋的氛围代替平淡的墙壁。•抵抗撞击,污渍,细菌,霉菌和霉菌,不会破裂。•安装的成本低于大多数HPL,乙烯基或天然材料。•使用标准清洁解决方案轻松清洁清洁。Applications & Uses Healthcare Facilities Dining Rooms Schools & Universities Patient Rooms Restaurants Fitness Areas Hotels & Casinos Kitchens Houses of Worship Restrooms Transportation Terminals Merchandising Displays Office & Residential Buildings Service Counters Fitness Centers & Spas Hallways & Corridors Grocery, Convenience & Drug Stores Lobbies Sports Arenas Lounges Physical Properties
高度集成的可拉伸电子产品的发展需要开发可扩展的(亚)微米导体图案。共晶镓铟 (EGaIn) 是一种适用于可拉伸电子产品的导体,因为其液态金属特性使其在变形时具有高电导率。然而,它的高表面能使其以亚微米分辨率进行图案化具有挑战性。在此,我们通过首次报道 EGaIn 的电沉积克服了这一限制。我们使用一种非水基乙腈电解质,该电解质具有高电化学稳定性和化学正交性。电沉积材料可产生低电阻线,在(重复)拉伸至 100% 应变时仍保持稳定。由于电沉积受益于用于图案化基底金属的成熟纳米制造方法的分辨率,因此提出的“自下而上”方法通过在纳米压印预图案化的金种子层上进行电镀,在弹性体基板上实现了 300 nm 半间距的 EGaIn 规则线的创纪录高密度集成。此外,通过填充高纵横比通孔,实现了垂直集成。该功能通过制造全向可拉伸的 3D 电子电路概念化,并展示了用于制造微芯片互连的稳定镶嵌工艺的软电子模拟。总体而言,这项工作提出了一种简单的方法来解决高度集成 (3D) 可拉伸电子产品中的金属化挑战。
摘要 - 使用蒸汽方法在本地配制的氢溶胶生产水性油漆(乳液,筛选,哑光油漆)和油漆(光泽涂料)。原材料是芙蓉花,薄荷叶,迷迭香和柠檬草。Soxhlet提取器使用正常的己烷作为溶剂来从压碎的叶子中进行氢溶液。蒸馏过程,以将氢溶胶与从提取过程中获得的氢溶剂溶剂混合物中的溶剂分离。氢溶胶的表征是为了确定生理化学特性,并因此适合油漆生产。The results showed the physicochemical parameters of the produced hydrosol were within the standard values, of Refractive index = 1.3698, pH = 6.5533, conductivity = 0.5167us/cm, TDS = 78.1667mg/l, density = 0.5183g/cc, specific gravity = 0.5183, viscosity = 8.1083cst, boiling point = 74.70c。生产的氢溶胶用于乳液,筛选,马特和光泽涂料的生产,它们的表征,它们给出以下pH = 6.90,6.94,7.39&6.62的物理化学结果。特定重力= 23.75,23.75,23.75&23.75。密度= 1.4078g/cc,1.2396g/cc,1.136g/cc,&1.1164g/cc。粘度= 9.8cst,10.5cst,10.8cst和8.47cst。干燥时间= 6小时,6小时,4小时和6小时。温度= 280C,280C,280C和280C。湿= 2.55、2、4和3。与标准相比,这些结果显示出合理的一致性。关键字 - 水基,水和油的油漆,物理化学参数。
• 在标准条件下和基准化学品进行测试时,表现出卓越的甜味腐蚀抑制性能,在非优化配方中以 10 ppm 剂量显示 99.8% 的保护率 • 在 RCE(30 Pa 壁面剪切应力)测试和高流量条件下(在 +60°C 的 3% 氯化钠 (NaCl) 盐水中获得的数据),以 10 ppm 剂量显示腐蚀减少 >99%,表明性能稳定 • 与重盐水兼容,例如 26% NaCl、20% NaCl 在 +70°C,>30% 氯化钙和 50 000 ppm Ca/25 000 ppm 钠盐水在 +80°C • 在高温下对有机酸的抑制性能良好,例如在 +95°C 下 24 小时后在 10% 柠檬酸中对碳钢的保护率 >95% • 低级生态毒性,使其适合在最严格的监管环境中使用 • 水毒性比常见的油田 CI 碱(如苯扎氯铵和咪唑啉)低 10-100 倍,无环境危险标签 • 测试表明 Armohib ® CI-5150 腐蚀抑制剂不会刺激皮肤、致敏或致突变 • 在室温下呈透明液体状,易于处理 • 内部配方研究表明,活性材料在配制时非常灵活,可以开发水基和溶剂基腐蚀抑制剂溶液,包括那些采用环境可接受溶剂的溶液
电动汽车对移动电源的需求不断增长,这促使人们致力于开发高性能电化学储能 (EES) 设备。然而,目前的 EES 技术无法满足各种应用对提高性能和安全性以及降低成本和环境足迹的要求。先进材料,包括活性阳极和阴极材料、非活性碳和粘合添加剂、金属集电器、隔膜和电解质,在支持电池运行方面发挥着重要作用。特别是,复合电极和电解质中不同相或组分的界面工程,以及每个组分或多组分设备的分层结构设计,可以解决与电荷传输动力学、电化学特性和化学/物理/机械性能相关的许多基本研究课题。因此,通过研究界面和结构可以提高储能性能、可靠性和安全性。本研究主题旨在强调电化学储能界面、材料和结构设计的最新进展和进展。本研究重点是研究和理解电化学储能装置的界面特性、电极和电解质材料以及分层结构设计,包括锂离子电池、锂金属电池、全固态电池、钠离子电池、多价电池、水基电池、液流电池、超级电容器、混合储能和其他创新系统。本研究主题中的两篇论文重点介绍了钾离子电池方面的成就,涵盖了制造高性能阳极材料的新方法。两篇论文报告了锂硫电池的最新进展,重点介绍了准/全固态电解质和多孔碳纳米纤维电极。
在电信智能天线系统中,透镜可用于主波束聚焦、旁瓣抑制和波束切换目的 [1]。透镜具有各种各样的形状和材质,但介电损耗非常低。陶瓷在较高温度下具有良好的稳定性,并且其介电常数可以调整。同时,它也有一个缺点,那就是制造温度高,导致制造过程中的能耗高,从而增加了生产成本。室温制造法 (RTF) 发明后,锂钼氧化物 (Li 2 MoO 4 ,LMO) 陶瓷的水基悬浮液可以在室温下制造,而不必在 400 ◦ C 以上的温度下制造 [2]。它的相对介电常数为 5.1,在 9.6 GHz 时的损耗角正切值为 0.0035 [3, 4]。此外,已经展示了 4 GHz 下的 LMO 陶瓷贴片天线 [5]。在 LMO 混合物中添加不同的介电材料可以改变其介电性能。 Li 2 MoO 4 -TiO 2 复合材料在 9.6 GHz 时的相对介电常数为 6.7–10.1,损耗角正切值为 0.0011–0.0038,具体取决于其体积百分比 [6]。(1 − x )Li 2 MoO 4 - x Mg 2 SiO 4 在 9 GHz 时的介电常数为 5.05–5.3(未提及损耗角正切)[7]。3D 打印 LMO 在 9.6 GHz 时的介电常数为 4.4,损耗角正切值为 0.0006 [8],据报道,超低介电常数 LMO 复合材料的介电常数为 1.12,损耗角正切值为 0.002 [9]。LMO 复合材料的射频应用研究尚处于早期阶段。在本信中,制作了直径为 30 毫米的钼酸锂 (Li2MoO4,LMO) 空心玻璃微球 (HGMS) 复合材料和透镜,并在 Ku 波段用波导馈源进行了分析。
本文研究了一种含有纳米封装相变材料 (PCM) 和金属壳材料的创新传热流体在太阳能储热系统中的光热转换性能。研究并比较了壳厚度、芯尺寸、壳材料类型、PCM 质量和壳体积浓度对储热介质热性能的影响。结果表明,水基 Ag、Au、Cu 和 Al 纳米流体的传热速率分别为 6.89、5.86、7.05 和 6.99 W,而在纯水中添加石蜡@Ag、Au、Cu 和 Al 纳米胶囊形成的浆液分别使传热提高了 6.18%、13.38%、10.8 和 11.33%。基于金属纳米颗粒的壳材料通过增强储热介质的太阳辐射捕获能力进一步增加了温度和能量存储增益。具体而言,根据 PCM 的质量浓度,石蜡@Cu 浆料的存储容量增加了 290%。由于 Ag 颗粒的壳厚度也从 8 纳米减小到 2 纳米,它使浆料的热能存储能力增加了 7%。然而,纳米胶囊尺寸的增大导致表面积与体积比 (SA:V) 聚集,从而降低了浆料的光热转换。因此,随着核尺寸从 10 纳米增加到 40 纳米,石蜡@Cu 浆料的热能存储行为降低了 5%。此外,壳中 Al 颗粒的体积浓度的增加令人惊讶地使热能存储降低了 5%。最后,还对石蜡基固体 PCM 进行了实验测试,以验证不同风速和太阳辐射下的比热容模型。
摘要 小型卫星的数量急剧增加和商业化要求开发和生产过程能够在更短的时间内以合理的价格应对大量卫星。在 IRAS(经济型卫星综合研究平台)内,当地的太空和非太空企业以及研究机构共同合作并讨论他们的需求。这是在技术基础上与项目团队和行业进展会议一起完成的。研究和开发新技术以降低组件、卫星和卫星星座的开发和生产成本和时间。为了实现这一目标,该项目研究了几种不同的硬件和软件技术。在增材制造技术领域,研究了聚合物和陶瓷材料的使用,结合多功能和仿生结构,以实现具有集成功能的轻质结构。电力和水基推进系统作为先进的绿色推进技术得到开发,可提供足够的推力来将大量卫星分配到轨道上,并在其运行阶段后安全地脱离轨道,同时具有成本效益。此外,还利用 DCEP(数字并行工程平台)研究了一种无需物理接近的卫星协同设计新方法,该方法提供了一个基于 Web 的软件平台,支持使用自动化设计工具和算法。设计工具也是在 IRAS 内部开发的,包括用于星座设计和任务分析以及卫星设计的工具。IRAS 技术也是技术演示卫星任务 SOURCE 的一部分,SOURCE 是一颗立方体卫星,由斯图加特大学空间系统研究所和学生组织 KSat eV 合作开发和运营。本文概述了 IRAS 项目中这些活动领域的概念、成就和当前发展。