a 代尔夫特理工大学机械、海洋与材料工程学院,海洋与运输技术系,Mekelweg 2, 2628 CD 代尔夫特,荷兰 b 根特大学机电系统与金属工程系和 FlandersMake@UGent - Corelab EEDT-MP,Sint-Martens-Latemlaan 2B, 8500 Kortrijk,比利时 c 查尔姆斯理工大学力学与海洋科学系,流体动力学系,412 96 哥德堡,瑞典 d 挪威科技大学能源与过程工程系,水力实验室,NO-7491 特隆赫姆,挪威 e 布伦瑞克工业大学 Elenia 高压技术与电力系统研究所,Schleinitzstraße 23, 38106 布伦瑞克,德国 f IHE 代尔夫特水教育研究所,Westvest 7, 2611 AX 代尔夫特,荷兰 g 代尔夫特理工大学水利工程、水利结构和洪水风险系,荷兰 h 密歇根大学土木与环境工程系,2350 Hayward,安娜堡,密歇根州 48109-2125,美国
管道技术基于流体流动的普遍原理。当真实(粘性)流体流过管道时,其部分能量用于维持流动。由于内部摩擦和湍流,该能量被转换成热能。这种转换导致能量损失以流体高度来表示,称为水头损失,通常分为两类。第一种类型主要是由于摩擦,称为线性或主要水头损失。它存在于整个管道长度中。第二类称为次要或单一水头损失,是由于管网中存在的次要附属物和附件造成的。流体流动遇到的附属物是边界的突然或逐渐变化,导致流速的大小、方向或分布发生变化。这种主要和次要水头损失的分类是相对的。对于具有许多次要附属物的短管,总次要水头损失可能大于摩擦水头损失。在石油和水分配网络中,管道长度相当长,因此可以使用主要水头损失和次要水头损失这两个术语而不会产生混淆。为了对各种类型的水头损失进行一般而精确的公式化,人们进行了大量研究。Weisbach [1] 是第一个提出水头损失关系的人。正如 Bhave [2] 所指出的,Darcy 为推导关系的应用做出了巨大贡献,因此他的名字与 Weisbach 的名字联系在一起。因此,该关系通常称为 Darcy-Weisbach 公式。它本质上取决于摩擦系数和相对粗糙度。摩擦系数是雷诺数所表征的流态的函数。人们提出了几种摩擦系数的显式和隐式关系。Nikuradse [3] 进行了大量实验,实验涉及使用均匀大小的沙粒实现的光滑和人工粗糙管道。Nikuradse 图也称为 Stanton 图或 Stanton-Pannel 图,是这些研究的结果。 Colebrook [4] 比较了 Nikuradse 图表中的结果,发现其曲线与实际管道的曲线不匹配。但是,通过引入等效表面粗糙度的概念,可以将 Nikuradse 的结果用于商用管道。其他几位研究人员在文献中提供了不同的图表。Johnson [5] 使用几个无量纲组给出了商用管道的图表。Rouse [6] 绘制了代表
来自恒定水头源的流量被输送到皮托管的静压端口和总水头端口。此流量在操作期间提供对皮托管的连续反冲洗。反冲洗是必要的,以保持皮托管和连接管内已知密度的流体(或在这种情况下为固体水)。用于反冲洗的恒定水头供应压力必须大于流量中要测量的最大预期速度水头。背压由压力调节计设定。每个端口的反冲洗流速由低流量转子流量计控制。通过实验室测试,选择了空气中 3.79 1/hr 的反冲洗流速。此流速是可以通过的最小流速,并且仍可在空气中产生从皮托管端口连续流出。7.57 和 11.36 1/小时的反冲洗流速也产生了良好的结果;然而,较低的流速提供了更好的仪器低端灵敏度。
11) 本地水流报警位置或调出异常情况 [7.6] 12) 提供防冻保护/隔热细节 [9.1] 13) 展示所有使用的吊架细节 [4.4, 7.4] 14) 识别或调出最大水头间距 [8.1.3.1] 15) 识别并提供所用每种管道材料的细节 [4.4] 16) 识别并调出双水头流量试验的远程/设计区域 [4.4, 10.2.1. (AHJ)] 17) 调出/提供远程/设计区域水力数据 [4.4] 18) 按照第 10 章提供水力计算
2018 年,Timodos 部落微型水力发电协会、ULEP Studio 和 YAMOG 制作了“Barangay Timodos 的能源贫困问题”。微型水力发电 (MHP) 是一种清洁的可再生能源,已被用于偏远社区发电。MHP 技术成熟且经过验证,其运行原理与大型水力发电厂相同,但发电量要低得多,具体取决于国家标准。在菲律宾,能源部将微型水力发电厂定义为容量在 1 千瓦至 100 千瓦之间的水力发电厂。大多数微型水力发电系统都是径流式系统,其中全年可用的特定水量通过分流堰从河流转移到 MHP 系统。由于大型水坝对环境的影响,MHP 系统通常避免使用大型水坝。相反,地形带来的自然水头被用于 MHP。为了可行,MHP 需要至少在一年中的大部分时间持续供水,并且水头要大。由于对水和水头的要求以及电网无法到达的社区,MHP 主要用于山区热带农村地区。MHP 已经证明自己是一种实用且可能低成本的偏远地区发电选择。菲律宾地方政府和社区驱动的可再生能源解决方案:最佳实践示例 | 5
2.1 最佳水库位置 抽水蓄能容量取决于两个基本因素:1) 储存量和 2) 上、下水库之间的水头差。这两个因素共同决定了在特定地点可以储存的能量。因此,在不受约束的环境中,上、下水库的最佳位置至少取决于一个参数,即上、下水库之间的水头与长度之比(平均坡度)。然而,实际上,符合“最佳”条件的地点是一个多维问题,其中包括储存能量、储存量、管道长度、大坝高度、大坝体积等因素,简而言之,地点“最佳”或“最佳”的定义取决于地形以及抽水蓄能系统的功能和用途。地形优化问题可以用数学表示为
水力发电潜力 • 水头 - 进水口和涡轮机之间的高度距离(英尺) • 流量 - 水量(cfs) • 水力效率 - 主要由压力水管的大小和类型决定 • 涡轮机的机械效率 • 电机的电气效率
c) 剖面 A – A*。剖面图中显示的 Riegel Horizon (RH) 未在数值模型中考虑。数据来自 GDI-BW (2015)、Geofabrik (2022)、USGS (2017)。水头数据来自弗莱堡环境保护局和巴登-符腾堡州环境、调查和自然保护研究所 (LUBW)。剖面图根据 Wirsing 和 Luz (2005) 修改。
摘要 人口和工业需求不断增长,可再生能源和能源可持续性对于满足能源需求的指数增长至关重要。然而,可再生能源的不可预测性仍然是持续能源供应的一个问题。多年来,阿拉伯联合酋长国 (UAE) 一直在投资可再生能源技术,特别是太阳能、核能、风能、废物能源和水力发电。然而,这似乎仍然不够,化石燃料的短缺引发了一场令人担忧的能源讨论。因此,除了审查该国现有可再生能源的缺点外,这项工作还旨在寻找阿联酋潮汐能的可行性。潮汐能是一种新能源,但可预测性很高,如果应用得当,它可以增加可持续的解决方案。根据初步研究,阿联酋拉斯海马的萨卡尔港可以安装面积为 102 平方公里的潮汐泻湖,并安装双循环可逆涡轮机。平均水头差为 1.6 米的地点足以满足阿联酋总能源需求的 1%。关键词:退潮、水头差、可再生能源、萨克尔港、潮汐能、潮汐泻湖。