4.5.6.2 与超音速飞行有关的许可. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 4.5.7.4 请求的飞行计划变更的许可. . . . . . . . . . . 4-5 4.5.7.5 许可的复读. . . . . . . . 4-5 4.6 水平速度控制指令. . . . . . . . . 4-6 4.6.1 一般规定. . . . . . . . . . . . . . . . 4-6 4.6.2 申请方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 4.9 尾流湍流类别 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 4-8 4.10.2 确定
根据薄翼型理论,翼型近似于隧道中心四分之一弦点(x=0,y=0)处的单个涡流。风洞壁由距离为 h 且符号交替的无限垂直涡流行模拟,位于真实涡流上方和下方(见图 4)。在隧道中心线上的位置 x 处引起的水平速度相互抵消,但垂直分量相加。在涡流位置处,引起的垂直分量为零并改变符号。在封闭的隧道中,流动的曲率必须使得没有气流穿过隧道壁。
摘要 — 由于低成本惯性传感器误差积累,行人航位推算是一项具有挑战性的任务。最近的研究表明,深度学习方法在处理这一问题上可以取得令人印象深刻的效果。在本信中,我们提出了一种基于深度学习的速度估计方法的惯性里程计。利用基于 Res2Net 模块和两个卷积块注意模块的深度神经网络来恢复水平速度矢量和来自智能手机的原始惯性数据之间的潜在联系。我们的网络仅使用公共惯性里程计数据集 (RoNIN) 数据的 50% 进行训练。然后,在 RoNIN 测试数据集和另一个公共惯性里程计数据集 (OXIOD) 上进行验证。与传统的基于步长和航向系统的算法相比,我们的方法将绝对平移误差 (ATE) 降低了 76%-86%。此外,与最先进的深度学习方法(RoNIN)相比,我们的方法将其ATE提高了6%-31.4%。
摘要 起落架是飞机的主要部件之一。起落架不仅在起飞和降落时使用,而且在大多数情况下也用于地面机动。由于其功能,起落架也是飞机的关键安全部件之一,因为它可以分散作用在飞机上的着陆载荷。上述载荷来自着陆时的垂直和水平速度,以及飞机因刹车而失去速度。起落架在每次着陆时都会承受不断变化的力,作用在各个方向上,唯一的区别在于它们的大小。重复的载荷条件会导致起落架严重磨损。这种磨损可分为两类,一类是刹车片等易耗件的磨损,另一类是结构部件的疲劳磨损。后一种磨损更危险,因为它进展缓慢,在许多情况下难以察觉。疲劳磨损可以通过数值分析来估计——这种方法对单个部件有很大的概率,但由于起落架整体的复杂性,它不够精确,无法应用于整个结构。为了评估整个起落架的疲劳,法规接受的最佳方法是实验室测试方法。它涉及一系列类似于真实着陆条件分布的各种跌落测试。测试的目的是
目录 页码 前言 (xvi) 引言 (xvii) 第一章 定义 1-1 1.1 引言 1-1 1.2 空中交通服务术语 1-1 第二章 空中交通服务安全管理 2-1 2.1 总则 2-1 2.2 目标 2-1 2.3 空中交通服务安全管理活动 2-2 2.4 安全水平监测 2-2 2.5 安全审查 2-3 2.6 安全评估 2-5 2.7 加强安全的措施 2-7 2.8 人力资源管理 2-7 第三章 空中交通服务系统容量和空中交通流量管理 3-1 3.1 容量管理 3-1 3.2 空中交通流量管理 3-4 第四章 空中交通服务的一般规定 4-1 4.0 当局的设立 4-1 4.1 提供空中交通管制服务的责任4-1 4.2 提供飞行情报服务和告警服务的职责 4-3 4.3 空中交通管制单位之间的管制责任划分 4-4 4.4 飞行计划 4-6 4.5 空中交通管制许可 4-8 4.6 水平速度管制指令 4-12 4.7 垂直速度管制指令 4-14 4.8 从 IFR 改为 VFR 飞行 4-15
农业。然而,关于无人机干扰对动物福祉影响的研究缺乏或有限。本研究的目的是通过测量单次或多次无人机飞行时牛的心率和运动率来研究无人机飞行对肉牛的影响。总共 16-18 头杂交肉牛小母牛被引入不同的飞行模式,飞行高度在 5 到 9 米之间,水平速度约为 1 到 2 米/秒,持续 4 周,每周重复飞行 3 天。研究结果表明,单次无人机飞行(i)圆形和(ii)网格模式飞行对小母牛的心率和运动率没有显着影响。然而,多次(i)圆形模式和(ii)接近式飞行在首次引入无人机时会增加小母牛的心率,但重复飞行会导致习惯。此外,刚开始接触圆形飞行模式的小母牛可能会逃跑,但经过多次飞行后就会习惯。然而,接触接近式飞行模式的小母牛即使经过多次飞行,也表现出更多的逃跑行为。本研究的结果将为安全使用无人机进行牛健康和行为监测提供信息。关键词:无人机、网格模式、圆形模式、心率、
目录 页码 前言 (xvi) 引言 (xvii) 第 1 章 定义 1-1 1.1 引言 1-1 1.2 空中交通服务术语 1-1 第 2 章 空中交通服务安全管理 2-1 2.1 总则 2-1 2.2 目标 2-1 2.3 空中交通服务安全管理活动 2-2 2.4 安全水平监测 2-2 2.5 安全审查 2-3 2.6 安全评估 2-5 2.7 加强安全的措施 2-7 2.8 人力资源管理 2-7 第 3 章 空中交通服务系统容量和空中交通流量管理 3-1 3.1 容量管理 3-1 3.2 空中交通流量管理 3-4 第 4 章 空中交通服务的一般规定 4-1 4.0 当局的设立 4-1 4.1 提供空中交通服务的责任管制服务 4-1 4.2 提供飞行情报服务和告警服务的职责 4-3 4.3 空中交通管制单位之间的管制责任划分 4-4 4.4 飞行计划 4-6 4.5 空中交通管制许可 4-8 4.6 水平速度管制指令 4-12 4.7 垂直速度管制指令 4-14 4.8 从 IFR 改为 VFR 飞行 4-15
摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平弗劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 状态下的湍流均方根 (rms) 速度。我们发现湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析非常吻合。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度中间层动力学在统计平均值上受 SMT、ST 和 KT 控制。
摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平佛劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 范围内的湍流均方根 (rms) 速度。研究发现,湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型得出的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析结果吻合良好。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度动力学在统计平均值上受 SMT、ST 和 KT 控制。