摘要:准确分割 3D 磁共振成像 (3D-MRI) 中的脑肿瘤对于简化诊断和治疗过程至关重要。在基于能量函数理论的图像分割和分析方法领域,水平集方法已成为一种有效的计算方法,极大地促进了几何活动轮廓模型的发展。使用水平集技术时,减少分割误差和所需迭代次数的一个重要因素是初始轮廓点的选择,这两者在处理脑肿瘤可能具有的各种大小、形状和结构时都很重要。为了定义速度函数,传统方法仅使用图像梯度、边缘强度和区域强度。本文提出了一种受量子启发蜻蜓算法 (QDA) 影响的聚类方法,QDA 是一种受蜻蜓群居行为启发的元启发式优化器,用于准确提取初始轮廓点。所提出的模型采用量子启发计算范式来稳定开发和探索之间的权衡,从而弥补传统基于 DA 的聚类方法的任何缺点,例如收敛速度慢或陷入局部最优。首先,可以使用量子旋转门概念将代理群重新定位到可以更好地实现最优值的位置。然后,通过采用突变程序来增强群体突变并实现其多样性,使主要技术具有强大的局部搜索能力。在将颅骨与大脑分离的初步阶段之后,在 QDA 的帮助下确定肿瘤轮廓(边缘)。MRI 系列的初始轮廓将从这些提取的边缘得出。最后一步是使用水平集分割技术在所有体积段中隔离肿瘤区域。当应用于 BraTS 2019 数据集中的 3D-MRI 图像时,所提出的技术优于最先进的脑肿瘤分割方法,如所获得的结果所示。