这项工作是在OSIP ESA研究的框架中进行的(ESA合同NR。4000133471/20/nl/glc/kk)。基于模型的方法已被证明是有效的,可以在支持工程活动,替代传统基于文档的方法的模型中有效。即使在大多数高级部署中,许多工程文物也是文本式的,要么是因为引入模型的投资回报在此特定情况下过于较低,要么是因为即使出现一致性和正确性问题,也以自然语言表达了信息。最近在基于AI的自然语言处理(NLP)中取得了巨大进展,主要是由聊天机器人和声乐家庭助理用法驱动。提出的想法包括将这些技术旋转到太空工程过程中,研究自然语言处理如何帮助太空工程师进行日常活动。许多工程领域都可以利用这些技术的优势。最明显的是需求管理域,因为大多数要求都是文本型,即使它们具有一定的结构和规则,也通常不会正式建模。使用NLP技术语义信息可以从文本要求中提取,这可能
摘要。对单个量子系统(例如单个光子、原子或离子)的精确控制为一系列量子技术打开了大门。这一概念的目标是创建能够利用量子效应解决数据处理和安全信息传输问题以及比现有方法更有效地对周围世界参数进行高精度测量的设备。量子技术出现的关键一步是二十世纪下半叶的开创性工作,它首先展示了量子力学对自然的描述的矛盾性和正确性,其次,奠定并引入了成为现代量子技术基础的基本实验方法。2022 年诺贝尔物理学奖授予了 Alain Aspect、John Clauser 和 Anton Zeilinger,以表彰他们对纠缠光子的实验、建立贝尔不等式的违反以及开创量子信息科学。
早期生活压力 (ELS) 和重度抑郁症 (MDD) 具有共同的神经网络异常。然而,尚不清楚 ELS 和 MDD 如何单独和/或共同与大脑网络相关,以及患有和不患有 ELS 的抑郁症患者之间是否存在神经差异。此外,先前的研究评估了静态与动态网络属性,这是一个关键的空白,因为大脑网络会随着时间的推移显示协调活动的变化。71 名未接受药物治疗的女性,有或没有童年性虐待 (CSA) 史和/或 MDD,完成了静息状态扫描和压力任务,其中收集了皮质醇和情感评分。检查了重复的功能网络共激活模式 (CAP),并计算了 CAP 中的时间(每个 CAP 表达的次数)和转换频率(不同 CAP 之间的转换)。检查了 MDD 和 CSA 对 CAP 指标的影响,并将 CAP 指标与抑郁和压力相关变量相关联。结果表明,MDD 与 CAP 指标相关,但 CSA 与 CAP 指标无关。具体而言,与 HC(N = 36)相比,患有 MDD(N = 35)的个体在后默认模式 (DMN)-额顶网络 (FPN) CAP 中花费的时间更多,并且在后 DMN-FPN 和原型 DMN CAP 之间转换的频率更高。在各个组中,在后 DMN-FPN CAP 中花费的时间越多,DMN-FPN 和原型 DMN CAP 转换频率越高,反刍的频率就越高。DMN 和 FPN 之间的不平衡似乎是 MDD 的核心,可能导致与 MDD 相关的认知功能障碍,包括反刍。出乎意料的是,CSA 并没有调节此类功能障碍,这一发现需要在未来样本量更大的研究中进行复制。