Ahmadi,M.,Arabi,M.,Ascough,J.C.,Fontane,D.G。和Engel,B。 A. (2014)。 朝着改进流域模型的校准:多站点多物镜信息。 环境建模与软件,59,135 - 145。https://doi.org/10.1016/j.envsoft.2014.05.012 Ala-Aho,P.,Soulsby,C.,Wang,H。,H。,&Tetzlaff,D。(2017)。 集成的表面表面模型研究地下水在源头流域径流产生中的作用:一种极简主义的参数化方法。 水文学杂志,547,664 - 677。https://doi.org/ 10.1016/j.jhydrol.2017.02.02.023 Arabi,M.,Govindaraju,R.S.,&Hantush,M.M。(2006)。 使用遗传算法对流域管理实践的具有成本效益的分配。 水资源研究,42,W10429。 https://doi.org/10.1029/ 2006wr004931 Bekele,E。G.和Nicklow,J。W.(2007)。 使用nsga-ii的特警自动量化。 水文学杂志,341,165 - 176。 Bieger,K.,Hormann,G。,&Fohrer,N。(2015)。 (2015):中国山流域中特警表面径流和沉积物产量的详细空间分析。 水文科学杂志,60(5),784 - 800。https://doi.org/10.10.1080/02626667.2014.965172 Chaubey,I.,Chiang,L. 最佳管理实践在提高牧场主导的流域中水质方面的有效性。 (2015)。 改善地球系统模型中水文过程的代表。 水资源研究,51,5929 - 5956。https://doi.org/10.1002/2015WR017096Ahmadi,M.,Arabi,M.,Ascough,J.C.,Fontane,D.G。和Engel,B。A.(2014)。朝着改进流域模型的校准:多站点多物镜信息。环境建模与软件,59,135 - 145。https://doi.org/10.1016/j.envsoft.2014.05.012 Ala-Aho,P.,Soulsby,C.,Wang,H。,H。,&Tetzlaff,D。(2017)。集成的表面表面模型研究地下水在源头流域径流产生中的作用:一种极简主义的参数化方法。水文学杂志,547,664 - 677。https://doi.org/ 10.1016/j.jhydrol.2017.02.02.023 Arabi,M.,Govindaraju,R.S.,&Hantush,M.M。(2006)。使用遗传算法对流域管理实践的具有成本效益的分配。水资源研究,42,W10429。https://doi.org/10.1029/ 2006wr004931 Bekele,E。G.和Nicklow,J。W.(2007)。 使用nsga-ii的特警自动量化。 水文学杂志,341,165 - 176。 Bieger,K.,Hormann,G。,&Fohrer,N。(2015)。 (2015):中国山流域中特警表面径流和沉积物产量的详细空间分析。 水文科学杂志,60(5),784 - 800。https://doi.org/10.10.1080/02626667.2014.965172 Chaubey,I.,Chiang,L. 最佳管理实践在提高牧场主导的流域中水质方面的有效性。 (2015)。 改善地球系统模型中水文过程的代表。 水资源研究,51,5929 - 5956。https://doi.org/10.1002/2015WR017096https://doi.org/10.1029/ 2006wr004931 Bekele,E。G.和Nicklow,J。W.(2007)。使用nsga-ii的特警自动量化。水文学杂志,341,165 - 176。Bieger,K.,Hormann,G。,&Fohrer,N。(2015)。 (2015):中国山流域中特警表面径流和沉积物产量的详细空间分析。 水文科学杂志,60(5),784 - 800。https://doi.org/10.10.1080/02626667.2014.965172 Chaubey,I.,Chiang,L. 最佳管理实践在提高牧场主导的流域中水质方面的有效性。 (2015)。 改善地球系统模型中水文过程的代表。 水资源研究,51,5929 - 5956。https://doi.org/10.1002/2015WR017096Bieger,K.,Hormann,G。,&Fohrer,N。(2015)。(2015):中国山流域中特警表面径流和沉积物产量的详细空间分析。水文科学杂志,60(5),784 - 800。https://doi.org/10.10.1080/02626667.2014.965172 Chaubey,I.,Chiang,L.最佳管理实践在提高牧场主导的流域中水质方面的有效性。(2015)。改善地球系统模型中水文过程的代表。水资源研究,51,5929 - 5956。https://doi.org/10.1002/2015WR017096土壤和水保护杂志,65,424 - 437。https://doi.org/10.2489/jswc.65.65.6.424 Clark,M.P.,Fan,Y.,Y.,Lawrence,D.M.,D.M.,D.M.麦克斯韦(R. M.
13 Mohammadamin Rashidi mrashidi@ualberta.ca 分散液-液微萃取(DLLME)与全疏性玻璃纤维膜相结合用于超灵敏表面增强拉曼光谱 15 Rouhollah Heydari rheydari@ualberta.ca 蜂窝状沸石上汽车喷漆房挥发性有机化合物的循环吸附/再生 17 Jingya Pang jpang3@ualberta.ca 评估活化铝土矿残渣(ABR)去除水柱中 PFAS 的潜力 19 Farzad Dadbakhsh dadbakhs@ualberta.ca 地源热泵 21 Jian Shi js23@ualberta.ca 通过敏感性分析确定流域中的主要水文过程 23 Priscila Portocarrero pportoca@ualberta.ca 表征分散双翼鱼群中的尾流模式 25 Ramin Mashayekhi mashaye1@ualberta.ca 使用 LTSpice 27 中的热电路类比为立方体卫星开发辐射模型 Muhammad Muzzammil muzzammi@ualberta.ca 低成本石英音叉:用于表征低容量液体试剂的正交工具
由于内华达山脉水资源(在我们的网络内部和对该地区)至关重要,气候变化可能会改变水文过程,以及国家 NPS 水资源部计划在所有网络中建立水质监测,SIEN 特别重视总结和评估现有的水资源信息。水质监测完全融入 SIEN 监测计划。配套附录 A“立法”、附录 B“公园和生态系统”、附录 C“空气资源”、附录 D“水资源”和附录 E“网络监测”提供了更多信息和细节。第 2 章:概念模型 SIEN 已经开发了概念模型来指导监测计划的制定。我们使用概览模型来 (1) 强调与过程相互作用的生态系统因素,以构建物理环境及其生物群落,(2) 说明影响内华达山脉景观的输入和输出,(3) 强调内华达山脉最重要的压力源及其相互作用,以及 (4) 强调我们监测的焦点系统和过程。更具体、更详细的概念模型重点关注我们的生命体征。附录 F“概念模型”提供了额外的信息和细节。
摘要。尽管降雨径流水文学文献中对基于物理和空间分布的模型的优点存在争议,但寒区水文学领域的大量工作已经表明,通过纳入基于物理的过程表示、相对高分辨率的半分布式和全分布式离散化以及使用需要有限校准的物理上可识别的参数,可以提高预测能力。虽然人们越来越倾向于在超分辨率(< 1 公里)和雪堆分辨尺度(≈ 1 至 100 米)下进行建模,但现有寒区水文模型在这些尺度上的计算能力有限。这里介绍了一种新的分布式模型,即加拿大水文模型 (CHM)。虽然该模型旨在普遍应用,但它的重点是寒区过程在水文学中发挥作用的应用。主要功能包括能够执行以下操作:通过可变分辨率非结构化网格以有效方式捕获表面离散化中的空间异质性;包括多个过程表示;更改、删除和解耦水文过程算法;在点和空间分布尺度上工作;扩展到多个空间范围和尺度;并利用各种强制场(边界和初始条件)。本文重点介绍整体模型理念和设计,并提供了许多寒冷地区特有的功能和示例。
绿色雨水基础设施(GRI)通过模仿自然的水文过程并减少径流对环境的不利影响,在城市雨水管理中起着重要作用。GRI包括各种基础设施,例如绿色屋顶,雨水花园,可渗透的人行道,植树和建造的湿地。Gris可以为城市地区带来多种利益。它有助于管理雨水,防止洪水和侵蚀,并通过自然过滤改善水质。此外,它可以通过为各种物种提供栖息地来降低城市热岛的影响,提高空气质量并支持生物多样性。此外,GRIS的实施可能会带来多种抵押品,例如增强视觉吸引力以及促进娱乐,社会和公共场所。随着人为气候变化的影响和由于城市扩张而导致的环境退化,不列颠哥伦比亚大学(UBC)温哥华大学的水文系统随着时间的流逝将面临越来越大的挑战。面对这些挑战,了解校园现有的Gris的表现对于在UBC实现和计划有效的雨水管理至关重要。为了调查校园现有的GRIS的性能,该项目通过评估其在2024年1月至2月之间的降水事件期间评估校园能源中心(CEC)雨水花园(RGS)的有效性。确定了三个目标,以评估GRI的有效性并提出建议:根据成果,提出了特定于网站的建议,以提高性能和建筑弹性,以及在整个校园中广泛适用的更一般建议。
永久冻土在世界各地的高纬度地区普遍存在,对寒冷地区的水文和生态有重大影响。气候变化可能会导致永久冻土分布发生变化,影响地下水和地表水相互作用、栖息地和生态系统、人造基础设施以及全球碳循环(Jorgenson 等人,2001 年;Nelson 等人,2002 年;Hinzman,2005 年;Walvoord 和 Striegl,2007 年;Froese 等人,2008 年;Schuur 等人,2008 年;Rowland 等人,2010 年)。目前,永久冻土的三维 (3-D) 分布受到严格限制,特别是在总永久冻土厚度的变化和未冻结区域或“taliks”的分布方面。缺乏对分布的了解限制了我们建立地下水流系统和地下水与地表水相互作用的现实概念和数值模型的能力。更好地了解当前的冻土分布对于提高我们对这些地区水文过程的了解以及评估生态系统、栖息地和基础设施对气候变化的脆弱性至关重要。绘制冻土图面临特殊挑战。由于冻土空间分布的预期变化,钻探等直接采样技术不足以表征冻土的范围或厚度,因为在寒冷地区此类数据稀疏。后勤问题也存在,因为冻土区通常道路很少,生态敏感,难以进入且成本高昂。地球物理方法提供了一种直接采样的替代方法,可以在有限的陆上旅行中提供更多空间连续的数据。地球物理方法测量地下物理特性的变化,例如电阻率、介电常数和地震速度。这些特性可能会有很大差异
抽象的土地使用变化深刻影响水文过程和各种规模的水质,因此需要对可持续水资源管理有全面的了解。本文研究了Gap-Cheon流域中土地使用变化的含义,分析了2012年和2022年的数据,并使用未来的土地利用模拟(FLUS)模型预测到2052年的变化。该研究采用水文模拟程序 - 孔(HSPF)模型来评估水量和质量动态。确定了七个土地利用类别,并检查了它们的进化,揭示了城市,农业,草原,湿地和森林地区的重大转变。使用确定系数(r 2),偏差百分比(PBAI)和平均绝对误差(MAE)评估了观察到数据的模型性能。结果表明,土地使用变化的动态性质,突出了城市化,农业和森林地区的转变。值得注意的是,该研究探讨了这些变化对水数量和质量的后果,仔细检查地表径流,蒸发,流量和养分负荷。城市绿色空间作为关键缓解剂,调节径流并增强吸水水。森林(植被)在维持水平衡方面也起着至关重要的作用,而湿地则作为减少洪水和水质改善的天然过滤器。这些发现强调了知情的土地使用计划的重要性,将城市绿色空间,森林和湿地视为可持续分水岭管理的组成部分。随着社会面临环境挑战,这项研究有助于更深入地了解人类活动与自然环境之间的复杂互动,强调对土地利用计划中基于自然解决方案的需求,以实现弹性和平衡生态系统。
摘要。高山盆地是人生生命的重要水源,可靠的水文建模可以增强高山盆地的水资源管理。最近,混合水文模型,基于过程的模型和深度学习(DL)在水文模拟中表现出了很大的希望。然而,现有混合模型的一个显着局限性在于它们未能在盆地中纳入适当的信息并描述高山水力过程,从而限制了它们在大型高山盆地中的Hy-Drological模型中的适用性。为了解决此问题,我们通过采用基于过程的模型作为主链并利用嵌入式神经网络(ENNS)来开发一组混合半分布的水电模型,以参数化和替换不同的内部模块。在藏族高原上的三个大高山盆地上测试了所提出的模型。一种气候扰动方法是用于测试混合模型的适用性,以分析大型高山盆地气候变化的水文敏感性。结果表明,提出的混合水文模型可以很好地预测径流过程和模拟大型高山盆地中的径流成分贡献。具有NASH – Sutcliffe Efiencies(NSES)的最佳混合模型高于0.87的最佳混合模型,显示了与最新的DL模型的合并性能。Hy-Brid模型在盆地内的未加州地点模拟水文过程方面还具有显着的能力,显着超过了传统的分布模型。总的来说,这项研究提供了一种具有另外,结果还显示了对气候变化的水文敏感性分析的合理模式。
气候变化预计会对俄勒冈州的干旱和野火风险产生长期影响,因为夏天继续变得更加温暖和干燥。本文调查了俄勒冈州东北部乌马提拉河流域的干旱特征和干旱繁殖的预计变化,以期为本世纪中叶(2030- 2059年)和本世纪末(2070- 2099年)的气候场景。使用从十个气候模型,土壤和水评估工具中的缩小的CMIP5气候数据集确定了预计气候的干旱特征,以模拟对水文过程的影响。短期(三个月)的干旱特征(频率,持续时间和严重性)使用四个干旱指数,包括标准化降水指数(SPI-3),标准降水 - 疏水 - 蒸发指数(SPEI-3),标准化的流量流量指数(SSI-3)和标准化的土壤水分水分Index(SSSMI-3)。结果表明,短期气象干旱预计变得更加普遍,SPI-3干旱事件的频率高达20%。短期水文干旱预计会变得更加频繁(SSI-3干旱事件的频率平均增加了11%),更严重且持续时间更长(短期干旱平均增加了8%)。同样,短期农业干旱预计会变得更加频繁(SSMI-3干旱事件的频率平均增加了28%),但未来持续时间略短(平均减少4%)。从历史上看,从气象到水文干旱的干旱繁殖时间比大多数亚巴丁斯的气象到农业干旱的繁殖时间短。对于预计的气候场景,干旱繁殖时间的减少可能会强调盆地供水的时机和能力以进行灌溉和其他用途。
Sharffenberg, WA、Fleming, MJ,2010。水文建模系统,HEC-HMS 用户手册。美国陆军工程兵团(水文工程中心 -HEC),美国华盛顿特区。Simon, HA,1981。人工智能科学。麻省理工学院出版社,美国马萨诸塞州剑桥。Simonovic, SP,2009。水资源管理:系统方法和工具。联合国教科文组织出版社,法国巴黎/英国伦敦。Simpson, J.、Adler, RF、North, GR,1988。拟议的热带降雨测量任务 (TRMM) 卫星。美国气象学会公报 69,278-295。Skaags, RW、Khaleel, R.,1982。渗透,小流域的水文建模。美国农业工程师学会,美国密歇根州圣约瑟夫。 Smith, L., Turcotte, D., Isacks, B., 1998. 使用离散小波变换的河流流量特性和特征检测。《水文过程》12,233-249。 Southgate, D., Whitaker, M., 1994. 经济进步与环境:一个发展中国家的政策危机。牛津大学出版社。 Sprague, RH, Watson, HJ, 1993. 决策支持系统:将理论付诸实践。Prentice Hall,Englewood Clifts,NJ Tecle, A., Duckstein, L., 1994. 多准则决策制定概念,载于:Bogardi Janos J.、Hans-Peter, N. (Eds.),《水资源管理中的多准则决策分析》。联合国教科文组织国际水文计划,法国巴黎。 Tian, Y., Peters-Lidard, CD, 2010. 卫星降水测量不确定性全球图。地球物理研究快报 37,doi:10.1029/2010GL046008。Turban, E.,2007。决策支持和商业智能系统。Pearson Prentice Hall,美国新泽西州 Upper Saddle River。USDA,1986。TR-55:小型流域城市水文学。美国农业部;国家资源保护局 (NCRS),华盛顿。USDA,2004。国家工程手册,第 630 部分:水文学:暴雨直接径流估算。自然资源保护局 (NRCS),美国农业部,华盛顿特区,美国。van Ast, AJ,2000。国际河流流域互动管理;北美和西欧的经验。地球物理学和化学,B 部分:水文学、海洋和大气 25,325-328。 van Dam, AA、Kelderman, P.、Kansiime, F.、Dardona, A.,2007 年。乌干达(东非)维多利亚湖附近纸莎草湿地氮滞留模拟模型。湿地生态与管理 15, 469-480。 van der Knijff, JM, Younis, J., de Roo, APJ, 2010。LISFLOOD:基于 GIS 的流域规模水平衡和洪水模拟分布式模型。国际地理信息科学杂志 24, 189-212。 van Griensven, A., Alvarez-Mieles, M., 2009。Abras de Mantequilla 湿地和影响区域的环境监测。联合国教科文组织-IHE,荷兰代尔夫特。 van Griensven, A.、Xuan, Y.、Haguma, D.、Niyonzima, W., 2008。使用遥感数据和建模了解河流湿地集水区过程,收录于:Sánchez-Marrè, M.、Béjar, J.、Comas, J.、Rizzoli, AE、Guariso, G. (Eds.),国际环境建模与软件大会。iEMSs,西班牙巴塞罗那,第 462-469 页。Vernimmen, RRE、Hooijer, A.、Mamenun, Aldrian, E.、van Dijk,AIJM,2012 年。印度尼西亚干旱监测卫星降雨数据的评估和偏差校正。水文与地球系统科学杂志 16,133-146。 Villa-Cox, G.、Arias-Hidalgo, M.、Mino, S.、Delgado-Cabrera, L.,2011。情景描述、管理选项和相关指标:Abras de Mantequilla 案例研究情况说明书,WP7。 WETWin 项目,ESPOL 大学,厄瓜多尔瓜亚基尔。