卫星现在通常用于测量水和陆地表面的反射,因此与环境相关的参数,例如水生叶绿素浓度和陆地植被指数。对于每个卫星任务,对于所有光谱带的大气底部都需要放射线验证,并涵盖将使用卫星数据的所有典型条件。现有的网络,例如水和陆地的Radcalnet等现有网络提供了至关重要的验证信息,但是(Aeronet-OC)不涵盖所有光谱带或(Radcalnet)不涵盖所有表面类型和查看角度。在这篇文章中,我们讨论了光辐射测定法中仪器,测量方法和不确定性估计的最新进展,并提出了以下观点,即需要一个新的自动化高光谱辐射仪网络来进行多损新的水和陆地表面反射率的多效率辐射验证。描述了联合网络概念的超网络,为网络特定方面的研究论文提供了背景。该网络在其对土地和水面的共同方法方面都是独一无二的。解释了土地和水测量之间的共同方面和差异。基于对面向验证的研讨会的HyperNET数据的早期热情,我们认为,这种新的自动高光谱辐射仪网络将有助于对水和多角度的多端辐射验证和多角度土地表面反射的反射。HyperNet网络与其他测量网络具有很强的协同作用(Aeronet,
Ikkoh Yasuda,Naomi Ruth D. Saludar,Ana Ria Sayo,Shuichi Suzuki,Akira Yokoyama,Yuriko Ozeki,Ikkoh Yasuda,Naomi Ruth D. Saludar,Ana Ria Sayo,Shuichi Suzuki,Akira Yokoyama,Yuriko Ozeki,
名启博:プラマ・核融合学志92,396(2016)。[4 W.H.fietz and al。,IEEE Trans。苹果。超级。26,4800705(2016)。 [5]P。Bruzzone和Al。 ,ncle。 Fuance 58,103001(2018)。 l。米切尔和阿尔。 ,超级条件。 SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。26,4800705(2016)。[5]P。Bruzzone和Al。,ncle。Fuance 58,103001(2018)。l。米切尔和阿尔。,超级条件。SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。SCI。树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。树。34,103001(2021)。!t。安多和al。,技术完整。1,791(1998)。Lage F. Dahlgren和Al。,Eng已满。甲板。167,139(2006)。]H。H. Hashizume和Al。,Eng已满。甲板。63,449(2002)。[10! Y. Ogawa和Al。,J。填充完整的等离子体。79,643(2003)。<+11 Z. Yoshida和Al。,Ressing主题等离子体。1,8(2006)。[12 Y. Ogawa和Al。,Ressing主题等离子体。9,140,014(2014)。13 V. Corat和Al。,Eng已满。甲板。136,1597(2018)。14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。14 A. Sagara和Al。,Eng已满。甲板。89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。89,2114(2014)。15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。15 Y. Zhai和Al。,Eng已满。甲板。135,324(2018)。https://typeoneergy.com/ [20!Sorbon和Al。,Eng已满。甲板。100,378(2015)。[22 A A. Sykes和Al。,ncle。Fusion 58,016039(2018)。<3- y。歌曲和Al。 ,Eng已满。 甲板。 183,113247(2022)。 24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。歌曲和Al。,Eng已满。甲板。183,113247(2022)。24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。24-24 N. Yanagi和Al。,Ressing主题等离子体。9,140,013(2014)。,Proc。 14th Symp。 Fusion Technology,1727(1986)。,Proc。14th Symp。Fusion Technology,1727(1986)。
2020年国家水计划的目的是为未来十年的国家机构,立法优先事项以及地方政府政策,计划和行动建立一个框架。EQB制定了该计划,以制定议程,以解决明尼苏达州的气候变化将加剧的固执和复杂的水问题。在为本报告做准备时,EQB召集了州机构,与来自44个公共和私人组织的250多人会面,并进行了两项非正式调查,以了解与水和气候有关的担忧以及有关地方和州政府应采取的行动的想法。该计划定义了目标,策略和行动。它突出了与气候有关的关键水问题,但这并不是我们面临的挑战或实施解决方案的详尽清单。本计划中提出的想法可以帮助建立优先事项并为决策提供信息,并且强调了在几个目标中采取多个好处采取行动以超越我们当前轨迹的需要。
国际大学气候联盟(IUCA)与未水和气候变化专家集团合作估计,IPCC评估的许多气候缓解措施的水需求是附件2(IUCA,2024年)。这项工作还估计了各种缓解作用的相对“水效率”。例如,每千亿升水用于使清洁能量代替化石燃料的能量,估计绿色氢的生产可节省约68.4吉甘顿二氧化碳等效排放,第二代液体生物燃料,大约2吉甘酮,以及约1.7 Gigatonnes左右的轻型电动汽车的电气化。IUCA估计,每千亿升水旨在维护或恢复泥炭地的水桌,将隔离约18.5 Gigatonnes的排放。IUCA估计,每千亿升水旨在维护或恢复泥炭地的水桌,将隔离约18.5 Gigatonnes的排放。