同伴审查了准备N/A提交的N/A出版月亮的出版物Jong-Sik; Kim,Kyujung;汉,东牛; Winiarz,Jeffrey G.;哦,金吴; “有机光赋予材料的最新进展”应用光谱评论2017,53,doi:10.1080/05704928.2017.1323307 Liang,Yichen; Winiarz,Jeffrey G.; “使用基于Triphenyliamine的光致热复合材料对相位放弃的激光束的实际校正” Applied Physics B:Lasers and Optics 2017,123,1-6。月亮,Jong-Sik;史蒂文斯(Stevens),泰勒(Tyler);蒙森,托德c。 Huber,Dale L。;金,阳ho;哦,金吴; Winiarz,Jeffrey G.; “在CW条件下运行的光疗法复合材料中的亚毫秒响应时间” Scientific Reports 2016,6,30810。 Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。 恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。 月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。月亮,Jong-Sik;史蒂文斯(Stevens),泰勒(Tyler);蒙森,托德c。 Huber,Dale L。;金,阳ho;哦,金吴; Winiarz,Jeffrey G.; “在CW条件下运行的光疗法复合材料中的亚毫秒响应时间” Scientific Reports 2016,6,30810。Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。 恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。 月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。公牛。2016,DOI 10.1007/S00289-016-1674-7。2016,DOI 10.1007/S00289-016-1674-7。
脂质体是一种微粒胶体囊泡,其中的水介质被一层或多层同心磷脂层包围。亲水性和疏水性药物均可加入其中,水溶性药物被困在水芯中,脂溶性药物被困在磷脂中。它提供控制释放和靶向药物输送,从而增强治疗效果并减少给药频率。几种基于脂质体的药物制剂已获准用于临床,许多正在接受广泛研究。在治疗上,它们被用作药物、病毒、细菌、抗原、肽(抗生素)、疫苗、基因和诊断剂的载体。本综述讨论了脂质体的生产方法和作为靶向和控制输送载体的广泛治疗潜力。
目的:芬苯达唑 (FZ) 具有潜在的抗癌作用,但其水溶性差限制了其在癌症治疗中的应用。在本研究中,我们研究了不同药物输送方法的 FZ 对体外和体内模型中上皮性卵巢癌 (EOC) 的抗癌作用。方法:用 FZ 处理 EOC 细胞系并评估细胞增殖。根据输送途径(包括口服和腹膜内给药)检查 FZ 对 EOC 细胞系异种移植小鼠模型中肿瘤生长的影响。为了通过将脂溶性药物转化为亲水性药物来改善 FZ 的全身输送,我们制备了 FZ 包覆的聚(D,L-丙交酯-共-乙醇酸) (PLGA) 纳米颗粒 (FZ-PLGA-NPs)。我们通过分析细胞增殖、凋亡和体内模型(包括细胞系和患者来源的 EOC 异种移植 (PDX))研究了 FZ-PLGA-NPs 的临床前疗效。结果:FZ 显着降低了化学敏感性和化学抗性 EOC 细胞的细胞增殖。然而,在细胞系异种移植小鼠模型中,口服 FZ 治疗对肿瘤减少没有影响。腹膜内给药时,FZ 不会被吸收,而是聚集在腹膜内空间。我们合成了 FZ-PLGA-NPs 以获得水溶性并增强药物吸收。FZ-PLGA-NPs 显着降低了 EOC 细胞系中的细胞增殖。与对照组相比,在患有 HeyA8 和 HeyA8-MDR 的异种移植小鼠模型中静脉注射 FZ-PLGA-NP 显着减轻了肿瘤重量。FZ-PLGA-NPs 在 PDX 模型中也显示出抗癌作用。结论:FZ 掺入的 PLGA 纳米粒子在 EOC 细胞和包括 PDX 在内的异种移植模型中发挥了显著的抗癌作用。这些结果值得在临床试验中进一步研究。
饮食在冠心病的发展和预防中起着至关重要的作用,各种饮食元素,如膳食中的 omega-3 ( 3 )、炎症指数 ( 5 )、维生素 K ( 6 )、镁 ( 7 )、L-精氨酸 ( 8 )、纤维 ( 9 )、钙 ( 10 )、维生素 D ( 10 )、维生素 A ( 11 ) 和开心果 ( 12 ) 已被科学证明与冠心病的发展有关。B 族维生素是一组水溶性维生素,对同型半胱氨酸 (Hcy) 的降解至关重要,而 Hcy 水平升高已被确认为冠心病的独立风险因素 ( 13 , 14 )。因此,B 族维生素的缺乏可能与冠心病的流行有关。然而,目前的研究大多集中在维生素 B6、维生素 B12 和叶酸与冠心病的关系上,很少有研究关注核黄素与冠心病之间的关系(15,16)。
BESTROIDS™和Lenticule®碟片在经过认证的数量中包含可行的微生物(通常根据ISO/IEC 17025认证,在可重复的条件下生产,使用ISO 17034:2016,使用NCTC®,NCTC®,NCPF®和Cect®和Cect®和Cect®。由纯种细菌,真菌或酵母培养在固体水溶性基质中,它们稳定至少一年,并且处于可行状态,其保质期为1 - 3年。每种产品的内部批处理变化都非常低。每个批次都有全面的分析证书,指定平均菌落形成单元(CFU)的平均数量,这是关于均值的扩展不确定性,有关确定产品数据的方法的详细信息以及原始菌株的段落数量(亚文化)。
卤素,例如氯(Cl 2),溴(BR 2)和碘,在大气化学中起着重要作用。它们是影响对流层的氧化能力的反应性物种。引入气体反应性卤素种类,例如盐酸(HCL),Cl 2,氯化硝基氯化物(Clno 2),BR 2,BROMO硝酸盐(BRNO 2)和溴单氯化物(BRCL),导致氧化挥发性的有机化合物(VOC 5)的产生,并提高了OR的氧化(PM)。特别是在氧化剂限制条件下。工业卤素排放在环境中的氧化汞中也起着重要作用,在这种环境中,卤素直接氧化了非水的可溶性元素汞,从而使水溶性氧化汞沉积到环境中。
环境污染最近已成为最重要的问题。由于其对全球人类健康,水生和其他生态系统的有害和不利影响,它受到了严重的关注[1]。工业废物具有许多有毒和危险的化学物质,包括来自纺织工业的有机染料,印刷,皮革公司,酿酒厂,电镀,药品和食品行业,这些染料极大地威胁着自然资源。大多数染料和化学物质都是高度水溶性和有毒的,这可能会对环境和人类造成严重损害[2]。在湖泊,池塘,河流,海洋等的水体上,一种很大的风险导致了稀缺的清洁和淡水。有机染料的工业排放到水资源中,由于它们是生态系统的一部分,因此显示出几个问题。大多数有毒的染料在人类和动物中表现出致癌,诱变和致化特性[3]。
摘要 癌症是指以细胞异常生长为特征的一系列疾病。细胞毒性药物无法区分快速分裂的健康细胞和快速增殖的癌细胞,从而产生了细胞毒性抗癌药物最臭名昭著的不良反应。纳米乳剂是纳米技术的重要工具,具有治疗和临床应用。目前,纳米乳剂被认为是用于靶向递送亲脂性抗肿瘤药物的最可行的纳米载体之一。除了解决水溶性问题外,这些制剂还可以针对癌细胞进行特异性靶向递送,甚至可能被开发用于克服多药耐药性。纳米乳剂克服了与传统药物递送系统相关的问题,例如生物利用度低和不依从性。本文综述了纳米乳剂在癌症治疗中的应用,以阐明该技术的当前地位。