我们的solupotasse®是为在开放田和温室中的施肥而开发的(因为它具有非常低的重金属和不溶性材料的水平,并且具有高溶解度,迅速而完全溶解),以帮助增强营养利用效率(精确农业)和较低的水消耗。
方案1。x如方案1中,r =CH2 OC(= O)Ch 3;两个光学异构体分别聚合。摩尔质量(m n)达到了10 4 g/mol。通过多偏敏制备相似的结构。在我们的实验室中,将聚合物用作神经指南,在药物输送中,Ca + / mg +液体膜中的选择性主动转运和聚合物的合成 - 无机杂交。[2,3]参考文献[1] S. Penczek,J。Prepula,K。Kaluzynski,聚(烷基磷酸盐):来自生物粒分子和生物膜的合成模型,向聚合物 - 甲状腺素造型型混合物(模仿生物源化),生物骨化菌群,5477.55555555。[2] S. Penczek,通过开环聚合的生物聚合物模型,编辑。S. Penczek,CRC,2017年。 [3] C. Pelosi,M.R。 Tinè,F.R。 WURM,主链水溶性的多磷蛋白:多功能聚合物作为生物医学应用的可降解PEG替代品,欧洲聚合物杂志,2020,141,110079 .. >S. Penczek,CRC,2017年。[3] C. Pelosi,M.R。Tinè,F.R。 WURM,主链水溶性的多磷蛋白:多功能聚合物作为生物医学应用的可降解PEG替代品,欧洲聚合物杂志,2020,141,110079 .. >Tinè,F.R。WURM,主链水溶性的多磷蛋白:多功能聚合物作为生物医学应用的可降解PEG替代品,欧洲聚合物杂志,2020,141,110079 ..
谷氨酸转运蛋白通过调节兴奋性神经发射器水平(涉及多种神经系统和生理疾病)时,通过调节兴奋性神经发射器水平来在神经生理中起关键作用。然而,由于它们在细胞内脑中的定位,包括谷氨酸转运蛋白在内的整合跨膜蛋白仍然难以研究。在这里,我们介绍了通过QTY代码产生的谷氨酸转运蛋白及其水溶性变体的结构生物信息学研究,这是一种基于系统氨基酸取代的蛋白质设计策略。这些包括由X射线晶体学,Cryo-EM确定的2种结构,以及6个由Alphafold2预测的结构及其预测的水溶性数量变体。在谷氨酸转运蛋白的天然结构中,跨膜螺旋含有疏水氨基酸,例如亮氨酸(L),异亮氨酸(I)和苯丙氨酸(F)。为设计水溶性变种,这些疏水性氨基酸被系统地取代了亲水性氨基酸,即谷氨酰胺(Q),苏氨酸(T)和酪氨酸(Y)。数量变体表现出水溶性,其中四个具有相同的等电聚焦点(PI),而其他四个具有非常相似的PI。我们介绍天然谷氨酸转运蛋白及其水溶性数量变体的超塑结构。尽管有明显的蛋白质跨膜序列差异(41.1% - > 53.8%),但与RMSD0.528Å-2.456Å相似,表现出与RMSD0.528Å-2.456Å的显着相似性。此外,我们研究了天然谷氨酸转运蛋白及其QTY变体之间疏水性斑块的差异。经过仔细检查,我们发现了这些转运蛋白中的L-> Q,i-> q,i-> t,i-> t,f-> y和q-> l,t-> i,y-> f的多种自然变化。其中一些自然变异是良性的,其余的是在特定的神经系统疾病中报告的。我们进一步研究了疏水性在谷氨酸转运蛋白中疏水性取代的特征,利用了变体分析和进化分析。我们的结构生物信息学研究不仅提供了疏水螺旋之间差异的见解
动脉粥样硬化发育[4]。apoC3是TG代谢的关键调节剂,是一种水溶性的低分子量脂蛋白,与HDL,VLDLS,CM和LDL一起存在于等离子体中[22]。研究表明,APOC3水平升高抑制了LPL和HL的活性,LPL和HL的活性延迟了甘油三酸酯 - 富含脂蛋白的脂蛋白清除率并增加了血浆中的水平,最终导致TG代谢受损[23]。尽管对APOC3的体内研究主要基于小鼠模型,但兔模型具有多种优势,例如更容易维持,主动脉的合适尺寸,高繁殖力和短期妊娠期[24],以及类似的脂质代谢和心血管病理生理学,如人类[25]。例如,肝LDL受体通常在兔子中像人类一样不活跃,
1。引言大麻二酚(CBD)是大麻的主要植物大麻素组成部分。近年来,CBD因其潜在的治疗作用而引起了人们的关注,并已作为各种疾病的药物进行了研究[1]。CBD最著名的用途之一是治疗某些类型的癫痫病,尤其是在儿童中。实际上,2018年美国食品药品监督管理局(FDA)批准了一种基于CBD的药物,用于治疗两种罕见形式的儿童癫痫,Lennox-Gastaut综合征和Dravet综合征。cbd还在其他疾病中的潜在益处(例如焦虑,睡眠障碍,疼痛和炎症)中进行了研究[2-4]。已经进行了许多临床和临床前研究,以确定CBD的有效性和安全性。尽管增加了对使用大麻二酚进行疾病和症状管理的临床和公众兴趣,但其高亲脂性和低水溶性限制了其作为治疗性的有效性[5]。因此,探索提高CBD在许多领域开发和应用的水溶性的有效策略至关重要。
DNA纳米技术用于构建晚期生物医学应用的设计器3D DNA纳米范围。1在过去的二十年中,全球社区见证了DNA纳米技术的迅速革命。2个DNA在纳米级和通过互补生物分子赋予其生物学活性的物质和生物学活性中有出色的控制。可以通过Watson和Crick Base配对来预测虚拟可编程DNA纳米结构,并且具有无与伦比的优势。3多年来,已经开发出了精确的尺寸和几何形状的1D,2D和3D DNA纳米量的自组装宽品种。4 - 6这些DNA纳米含量是水溶性的生物相容性材料,它们在各种ELDS中都有应用,包括生物传感,生物成像,药物输送和疗法学。7 - 10个DNA纳米范围具有非凡的功能化特性,可以通过这些特性,可以通过生物学部分(例如aptAmers,纳米材料,抗体和肽)进行定位。此外,DNA纳米量有可能在表面和内部空隙中结合并封装纳米go。11 - 14
1维(1D)配位聚合物指的是通过金属结合配体组中掺入金属离子或主链中的金属离子的大分子。,由于金属配体键的性质,它们比传统聚合物具有调节聚合物结构和功能的内在优势。因此,它们具有智能和功能结构以及伴随剂和治疗剂的巨大潜力。水溶性的1D配位聚合物和组件是协调聚合物的重要亚型,具有与生物和医疗应用等水性系统中苛刻应用的独特兴趣。本评论重点介绍了水溶性1D协调聚合物和组件的最新进展和研究成就。概述涵盖了1D配位聚合物的设计和结构控制,它们的胶体组件,包括纳米颗粒,纳米纤维,胶束和囊泡,以及制造的散装材料,例如膜无液体冷凝器,安全墨水,水凝胶驱动器和智能面料。最后,我们讨论了这些坐标国家聚合物结构和材料中几个的潜在应用,并在水性坐标聚合物的领域中展现出前景。
抽象的超氧阴离子(O 2• - )是有害的活性氧(ROS)。跨性金属离子复合物通常被用作消除ROS的抗氧化剂。在这项工作中,首先通过氢键与聚乙烯基醇结合了大豆蛋白分离株(SPI),是一种可生物降解的蔬菜蛋白,以合成基于SPI的聚合物微凝胶(SPI-PMG)载体。此外,通过结合4-羟基水杨酸氨基酸Schiff-bas bas bas Metal Metal Complacees(Hosalcysm,M = Cu,Zn),制备了一种新型水溶性的生物聚合物/金属复合物(SCM@SPI-PMG)。SPI-PMG的结构,形态和稳定性的特征是傅立叶变换红外光谱,扫描电子显微镜,X射线衍射模式和热量分析。结果表明,获得的SPMG的直径范围为150至400 nm。此外,通过氮气四唑轻还原测定法确定了生物聚合物 - 金属配合物的清除超氧化阴离子自由基活性。与载体SPI-PMG相比,SCM@SPI-PMG的清除活动得到了极大的改进。值得注意的是,SCCU@SPI-PMG的超氧化物歧化酶(SOD)模拟达到297.10%,SCZN@SPI-PMG模拟达到35.13%。因此,SCCU@SPI-PMG可以被视为酶SOD的生物功能模仿,并且在抗氧化药物领域具有有希望的应用前景。
我们通过有机金属介导的自由基聚合并(OMRP)合成了极性聚乙烯块共聚物(OMRP),使用甲基丙烯酸甲酯(MA),乙酸乙酸乙烯酸乙二醇(VAC)(VAC)(VAC)和自由基丙烯酰胺(DMA)和自由基丙烯酸乙烯甲基丙烯酸甲酯(MA)结合了受控的自由基聚合。使用CO(SALEN)允许聚合更广泛的单体范围,从较少活化的单体(LAM)S到更激活的单体(MAM)S,最后是水溶性的,非离子单体通过使用photonitiator的变性机制(2,4,4,4,6- trimethyltipip的封装)(themential syment of)紫外线照射。鉴于CO(SALEN)聚合物休眠物种可以同时进行退化转移和可逆的终止机制,因此,第一部分可以作为顺序自由基聚合的自由基宏观发射剂。一项自由基共聚研究评估了极性单体和乙烯的反应性,以及从极性节段传播乙烯的可行性,使用65°C下的50 bar下的反应条件在65°C下进行。重新开始效率在60-90%之间,范围在60-90%之间,取决于休眠聚合物。PMA -B -PE,PVAC -B -PE和PDMA -B -PE的嵌段共聚物平均包含0.03至0。17 F乙烯聚乙烯。微域的形成和相分离研究证实了块共聚物的形成。选择CO(SALEN)与光诱导的OMRP结合使用,提供了一种可行的方法,可以在单一类型的活性物种中获取有价值的极性聚乙烯嵌段共聚物,其单体表现出不同的反应性朝向传播和激活。
特定的电能消耗为(11.5 - 13 kWh/kg SI),进入该工艺的碳材料代表相似的能源贡献。将大约一半的能量保留为Si金属中的化学能。碳足迹范围从4.7 kg CO 2 /kg Si到16千克CO 2 /kg Si),具体取决于该过程中使用的能源的类型(Xiao等,2010;Sævarsdottir等人,2021年)。由碳热过程产生的MG-SI的纯度约为98%和99%。电子级硅(杂质含量<1 ppb)和太阳级硅(杂质含量<1 ppm)用于各种应用,例如在光伏和电子产品中(Suzdaltsev,2022年)。用于从MG-SI生产高纯度硅的常规技术是西门子的工艺,它具有高能量消耗和低生产率(Chigondo,2018),或者使用流体化的床工艺(Arastoopour等,2022年)。另一种方法是Si在熔融盐中的电沉积,预计会产生高纯硅。如果所使用的阳极不耗时并且不产生CO 2,则与常规过程相比,碳足迹可以显着降低,如果用于电解的电力是可续签或核能的。已经证明,具有不同形态学的si膜可以电化学地沉积在不同的熔融盐中,例如氯化物,氟化物和氯化物 - 氟化物(Juzeliu Nas和Fray,2020年)。这些盐中的每一个都有优势和缺点;氯化物熔体是高度水溶性的,但沉积的胶片薄(<10 µm)。同时,沉积在浮力物中沉积的胶片是致密的,但是粘附在沉积物上的盐很难轻易去除。si可以通过将Si源/前体(例如SiO 2,Na 2 Sif 6,K 2 SIF 6和SICL 4)添加到熔融盐中来沉积。Si前体分解为Si(IV)电活性离子,该离子通过基于盐类型的一步或两步减少机制减少。