1. Kendall. K.. Alford, N. MeN., Clegg, WJ & Birchall, JD Nature339, 130-132 (1989)。2. Hoare, MR 等。J. Colloid Interface Sci. 75, 126-137 (1980)。立体建议 SrR-Tucker 1 和 Wilson 建议出版商如何缓解“直接观看”立体对的一个缺点。但是,即使经过多年的练习(我小时候通过盯着重复的墙纸图案不知不觉地获得了这项技术),也需要付出努力才能获得和保持立体视图,而且感知的深度从未像使用立体镜时那样清晰。然而,立体镜并不容易获得或便宜,而且太笨重,无法随身携带。我最近发现,传统立体镜的一个很好的替代品是通过两个平面塑料菲涅尔透镜来观察立体图像,这种透镜现在被广泛用作阅读放大镜。这些透镜并不昂贵,两个透镜合在一起的形状和大小与信用卡一样。光学质量出奇地高,立体图像至少与使用模制塑料双凸透镜的普通折叠立体镜产生的图像一样好。安德鲁·库尔森 英国爱丁堡大学分子生物学系,爱丁堡 EH9 3JR,英国
微塑料和纳米塑料是全球重要的环境污染物。尽管该领域的研究在不断改进,但在淡水系统中微颗粒和纳米颗粒的影响评估中存在许多不确定性、不一致性和方法学挑战。目前对不利影响的理解部分受到使用不相关的颗粒类型、不合适的测试设置和不切实际的环境剂量指标的影响,这些指标没有考虑到颗粒吸收的实际过程及其随之而来的影响。在这里,我们通过汇编最新的研究来总结当前的技术水平,旨在强调研究差距和实现更协调的测试系统所需的进一步步骤。特别是,生态毒理学情景需要反映环境现实的颗粒多样性和生物利用度。协调的测试设置应包括不同的吸收途径、暴露和与天然参考颗粒的比较。效果评估需要区分直接物理颗粒效应(例如由聚合物引起的损伤和毒性)和间接效应(例如通过浸出改变周围环境条件、改变浊度、稀释食物和改变生物行为)。实施这些建议有助于协调和更有效、基于证据地评估微塑料和纳米塑料的生态毒理学效应。
本文件为评估涉及毒性测试以及用于废水和地表水毒性测试的淡水和海洋鱼类、无脊椎动物和植物培养的生物实验室提供指导方针。涵盖的主题包括:评估标准、审计和评估准备、组织历史、实验室人员、设施、设备和用品、方法、样品收集、处理和保存、质量保证、记录和数据报告、安全和报告准备。执行水生生物实验室现场审计和评估的评估员必须具备 NPDES 计划的工作知识,并具备足够的生物监测和毒性测试方法知识和经验。本手册旨在帮助国家污染物排放消除系统 (NPDES) 评估员/检查员执行美国环境保护署 (1988a)《NPDES 合规性检查手册》中规定的合规性评估检查 (CEI) 和绩效审计检查 (PAI)。
1生命之树,惠康桑格研究所,剑桥,CB10 1SA,英国2 2号生物化学和分子生物学系,达尔豪西大学,哈利法克斯,哈利法克斯,新斯科舍省,B3H 4R2,加拿大3号,加拿大3号,3月3日。加利福尼亚,95343,美国5海洋共生研究部,Geomar Helmholtz海洋研究中心,基尔,德国基尔6号,植物学系,不列颠哥伦比亚大学,英属哥伦比亚大学,不列颠哥伦比亚省V6T 1Z4,加拿大7 Halmos Art and Sciences of Art and Sciences,Nova Mariy Science伦敦,伦敦,E1 4NA,英国9 9个微生物学与环境系统科学中心,维也纳大学,维也纳大学,A-1090,奥地利,奥地利10号海洋动物学系,Senckenberg Research Institute,Frankffurt,60325,德国,11325,德国11号神经科学与发展生物学系,维也纳,维也纳,奥斯特尼亚,奥斯特尼亚,科学院,1010年。俄勒冈州97403-1210,美国13,美国环境可持续发展研究中心,德比大学,德比大学,德比大学,DE22 1GB,英国,英国14号塞恩斯伯里实验室,诺威奇,NR4 7UH,英国NR4 7UH,英国15,生物学系,波特兰州立大学,波特兰州立大学,波特兰,波特兰,波特兰,俄勒冈州,俄勒冈州,97201,美国16 Gordty Moore Foundation,CACARITY FOUSING,PALO,PALO,PALO,PALO,PALO,PALO,PALO,PALO,PALO,PALO,PALO,分子生物学实验室,欧洲生物信息学研究所,剑桥,CB10 1SD,英国
─ 1000 rivers ( WWTP input) account 80% GLOBAL plastic into ocean ─ GLOBAL input .0.8-2.7 Millions Tonnes/year size <0.5 cm (Lebre3ton) ─ EUROPEAN input, 1.656 -4.997 Tonnes/year (RIMMEL paper) size > 2.5 cm,Turkey,Italy,UK ─ River plastic transport by extreeme flood x 100 (non-flood) ─ WWTPS,1.4 x 10 15项目/年进水10-26g/l,未经处理的3.8x10 16个/年的水,─-下水道溢出(CSO),即。River Tame, (UK) > 200 MPs items/day, 70 MPs/year ─ Landfills leachate , size 20-5000µm, 10-290 MP MPs items/liter ─ EU WFD and MSFD for 2030:reduce 50% plastic litter into sea and 30% MPs into the environment + Monitoring of litter, plastics and MPs ─ First papers published plastics in ocean, Science ,1972, MPB 1973年,
未来,常规 eDNA 研究和监测将转向无 PCR 方法。如需全面了解环境 DNA 研究的各个方面,包括方法、挑战和应用,请参阅 Taberlet 等人 (2018) 的文章。可以说,近几十年来,很少有领域像 eDNA 一样对生态学产生如此迅速而深远的影响。如今,eDNA 作为一种生态工具已在全球范围内广受欢迎,涵盖了从微生物到大型动物群的所有生物多样性水平,以及所有陆地和水生生物群落。其应用范围广泛,从检测入侵物种(Dougherty 等人,2016 年)、饮食研究(Shehzad 等人,2012 年),到通过吸血无脊椎动物(如水蛭)中的 DNA 间接检测哺乳动物的非侵入性方法(Schnell 等人,2015 年),再到水生生态系统的监测和评估(Chariton 等人,2015 年;Laroche 等人,2016 年)。水生生态学家是最早采用基于 eDNA 的方法的先驱和人士之一(Ficetola 等人,2008 年;Deagle 等人,2009 年;Chariton 等人,2010 年;Hajibabaei 等人,2011 年)。如今,基于 eDNA 的方法正在世界各地得到常规应用(Cordier 等人,2021 年),欧盟的 DNAquaNet 就是明证,该项目旨在开发和应用基于 eDNA 的方法来监测欧洲的水生系统(Leese 等人,2016 年)。eDNA 研究最令人兴奋的方面之一是能够从同一样本中获取大量生态信息。例如,一位研究人员可能会检查水样中的微生物成分;其他人可以对同一样本进行分析以检测鱼类或获取浮游植物组成。尽管需要考虑初始研究的实验设计及其对后续解释的影响( Zinger 等人,2019 年),但从相同样本中“重新获取”生态数据的能力不仅凸显了基于 eDNA 方法的独特属性之一,而且还强调了生物银行( Jarman 等人,2018 年)和共享 eDNA 样本的必要性,在大多数情况下,这些样本都是使用公共资金收集的。鼓励这些方法不仅可以使研究人员能够重新使用样本进行回顾性分析,这对于监测人类活动对地球生物群落的影响至关重要,而且还为利用样本探索与最初收集目的完全无关的问题提供了机会。
• 确定城镇内的水质问题并确定其优先次序; • 与各级公共和私营部门合作,确定并实施有科学依据的行动; • 将行动汇编成一个统一的综合愿景和行动计划,以保护和恢复城镇的水质和水生栖息地;以及 • 确定合作伙伴和利益相关者。尽管 Little Compton 的水资源总体上质量很高,但规划区内的几个水体的污染物水平升高,导致这些水体被 RIDEM 指定为“受损”,这意味着水质不符合其作为水生栖息地或用于娱乐的标准。Pachet Brook、Dundery Brook、Cold Brook 和 Cold Brook 以东支流的细菌水平很高,Round Pond 的磷含量很高。该计划与 Little Compton 综合计划一致,该计划制定了重要的当地目标、政策和行动项目来保护和改善水质。Little Compton 综合计划的自然资源目标包括:
残疾人住宿:请致电206-543-6450与残疾人服务办公室联系(语音),206-543-6452(TTY),206-685-7264(传真)或dso@uw.edu,以获取适应要求。照片:由Matthew Dunkle提供
如今,有许多例子说明了如何成功地将环境DNA/EDNA成功用于环境监测,这不仅是一种互补方法,而且还可以替代现有方法。大多数应用程序都触及了在limnive环境中的鱼类群落,在这些环境中,也有良好且全面的参考文献用于序列数据的生物信息学分析。但是,在几个领域和应用程序中,技术未使用或测试。这样的问题,例如,是否所有关税是否同样易于使用Edna检测到的问题?鱼是(通常说的)大而移动的,因此释放大量可以捕获和分析的DNA。但是其他出租车呢?埃德娜(Edna)如何在更具挑战性的环境中起作用,例如两个物种数量都大得多,涵盖了许多不同的动物菌株,而环境不那么封闭?当将基于EDNA和基于DNA的物种鉴定用于环境监测时,还有其他问题需要突出显示和讨论。它涉及假阳性答案的风险,甚至更重要的是,伪造负面答案的风险。这两个错误都非常重要,尤其是在监测外国入侵物种方面。必须采集多少样本以及如何进行抽样 - 在生态学中长期讨论的问题,但在环境监测中却不那么突出。与其他更传统的方法相比,基于EDNA的监视如何得到验证,结果是什么样的?
独特之处:威基瓦河和中圣约翰河系统是具有历史、环境和经济意义的资源。它们的流域和泉水流域对佛罗里达州人民的生活质量和福祉具有不可替代的价值。除了被指定为水生保护区外,威基瓦河及其支流还被指定为国家野生风景河、杰出佛罗里达水道 (OFW)、佛罗里达风景野生河、州独木舟小径和区域重要河流。中圣约翰河被指定为美国遗产河、OFW,该系统的部分区域是佛罗里达海牛保护区。威基瓦河是一个泉水系统,其大部分基流来自众多泉水,其水源是佛罗里达含水层,而圣约翰河是 310 英里系统的一部分,是北半球少数向北流动的河流之一。该水生保护区是威基瓦-奥卡拉生态走廊的核心,包含超过 75,000 英亩的保护区土地,拥有 35 个已确定的泉水群,是数千种动植物的家园,也是游客和佛罗里达州中部居民的绿地。