有许多污染来源,包括农业径流,工业排放,污水和废水,溢油和塑料废物,可以污染水生生态系统(Banaee等,2019; Banaee等,2019; Banaee等,20222a,b)。未经处理的污水和废水排入河流,海洋可以引入有害的病原体,病毒和细菌,并导致水污染(Ji等,2021; Sun等,2022)。产生有毒化学物质,重金属或其他有害物质的行业可能会将这些物质排入邻近的水源,从而导致水污染(Derikvandy等,2020; Mozafari等,2023)。农药和肥料在农业中的施用会通过浸出和径流污染水源,从而导致水污染(Banaee等,2013; Banaee等,2023a,b)。不适当处置废物的垃圾填埋场
预计影响 2021-2025 水生真菌是一个多系群,通过其生态特征(主要在海洋或淡水中生长和繁殖)而不是分类学联系在一起。全世界已描述的物种超过 6000 种,对于许多物种,我们对它们的生态、发生、范围等的了解仍然很少。作为一个新成立的实体,IUCN SSC 水生真菌专家组的主要任务是建立一支活跃的、具有全球代表性的团队,继续从不同地区招募具有水生真菌专业知识的成员。该小组旨在通过制作网站、社交媒体、出版物和会议演讲与相关的 IUCN 专家小组、其他科学家和公众接触,提高人们对水生真菌及其在海洋和淡水栖息地的重要性的认识。该小组旨在培训至少 5 名成员进行红色名录评估,对 3 种优先水生真菌物种进行红色名录评估。
水生细菌对人体健康构成严重危害,因此需要一种精确的检测方法来识别它们。一种考虑到水生细菌危害的光子晶体光纤传感器已被提出,并且其在 THz 范围内的光学特性已被定量评估。PCF 传感器的设计和检查是在使用“有限元法”(FEM) 方法的程序 Comsol Multiphysics 中计算的。在 3.2 THz 工作频率下,所提出的传感器在所有测试情况下的表现都优于其他传感器,对霍乱弧菌的灵敏度高达 96.78%,对大肠杆菌的灵敏度高达 97.54%,对炭疽芽孢杆菌的灵敏度高达 97.40%。它还具有非常低的 CL,对于霍乱弧菌为 2.095 × 10 −13 dB/cm,对于大肠杆菌为 4.411 × 10 −11 dB/cm,对于炭疽芽孢杆菌为 1.355 × 10 −11 dB/ cm。现有架构有可能高效且可扩展地生产传感器,为商业应用打开大门。创新在于优化结构参数,以提高光纤对细菌存在的敏感性,从而改善太赫兹波和细菌细胞之间的相互作用。它针对细菌大分子吸收峰来提高灵敏度。局部场增强可能来自优化,它将 THz 振动集中在细菌相互作用更多的地方。通过改善散射,结构改变可以帮助通过细菌特征性的散射模式识别细菌。这些改进提高了传感器对痕量细菌的检测。这些因素结合起来可提高传感器对水生细菌的检测能力。在水环境中,这将带来更精确、更高效的检测,有助于实时监测细菌污染。这些发展可能会对公共卫生和水质控制产生重大影响。
与环境污染相关的争议在人类生活和生态系统中正在增加。尤其是,由于产业的废水排放,水污染正在迅速增长。找到新水资源的唯一方法是重复使用经过处理的废水。提供了几种补救技术,可以方便地重用回收的废水。重金属,例如Zn,Cu,Pb,Ni,CD,HG等。根据毒性造成各种环境问题。这些有毒的金属暴露于人类和环境,离子的积累发生,造成严重的健康和环境危害。因此,这是环境中的主要问题。由于这种担忧,开发用于去除重金属的技术的重要性已增加。本文用两个目标贡献了新文献的概述。首先,它提供了有关治疗技术的草图,其次是其重金属捕获能力从工业e uent中。在本评论文章中审议了治疗绩效,其补救能力以及可能的环境和健康影响。最终,本综述提供了有关实验室量表研究中纳入的重要方法的信息,这些信息是确定可行且方便的废水处理所需的。此外,已经尝试着强调工业e uent重金属的重点,并建立了将重金属放入环境中的科学背景。
“如果当前的家庭形成趋势继续下去,平均完成率将必须在未来六年内完成三倍才能结束赤字。” -Dejan Eskic,Kem C. Gardner Polition Insitute
运动结构 (SfM) 近来在河流和水生科学中迅速流行起来。这种流行在很大程度上要归功于廉价无人机/无人驾驶飞机的广泛使用,它们有助于缓解地形挑战并提供高效、可重复和高精度的图像和地形数据。这些数据可以具有前所未有的时空覆盖范围,包括河流和水生地形、水力学、地貌和栖息地质量的测量。SfM 数据还提供了水下考古、结构和水生生物的全新量化。研究正在从地形测量的概念验证转向真正的应用,包括粒度测绘、水深测量、地貌测绘、植被测绘、恢复监测、栖息地分类、地貌变化检测和沉积物输送路径描绘。将点云分析和正射影像镶嵌图与数字高程模型 (DEM) 相结合已被证明可以有效地提供对河流和水生系统的新过程理解。水下和水下研究开始克服可访问性、可见性和图像失真的问题。档案照片和视频(水上和水下)正在使用 SfM 工作流程进行重新处理,以根据历史调查生成三维表面和物体,从而延长可以检测到变化的时间段。最近,已经开发了 SfM 工作流程
药物已被确定为对环境的重要威胁。它们不断进入水生生态系统意味着生物会长期暴露。迄今为止,已经有大量科学论文评估了药物对不同分类学群体的单个生物的影响。但是,药物对环境的影响可能比在毒性测试中对单个生物的毒性测试所确定的影响要广泛得多。这些化合物会破坏整个社区。在这种情况下,应特别关注微生物社区,该社区规范了许多基于水生食物网和生态系统服务的基本过程。本文回顾了与药物对微生物的影响有关的当前发展,特别关注新鲜和盐水中的全社区研究。我们还总结了与原位和实验室研究相关的机会,并突出了重要的知识差距。
摘要:ENROROXATIN(ENR)被广泛用作水生动物中疾病控制的合成氟喹诺酮抗生素。ENR适体,并开发了石墨烯氧化物荧光传感器来检测水生产品中的ENR残基。首先,ENR通过酰化反应将ENR与氨基磁珠共轭,然后通过使用SELEX筛选方法逐步筛选了显示高亲和力的适体序列。最后,在10轮SELEX筛选后,获得了6个具有高亲和力的候选适体。在其中,基于其二级结构特征,高亲和力(k d = 35.08 nm)和ENR的高特异性选择。此外,使用氧化石墨烯并重新安装6。结果表明,传感器的线性范围可以达到600 nm(R 2 = 0.986),而其最佳线性范围为1-400 nm(R 2 = 0.991),最低检测极限为14.72 nm。制备的传感器成功用于检测实际样品中的ENR,恢复范围为83.676–114.992%,大多数样品的相对标准偏差<10%。
图4和图5显示了厚度H = 16和λ= 0的浮膜的涡度场和循环结果。25我们观察到涡度场沿垂直于观测平面的方向更强(请参阅3)。图4,我们在x -z平面中显示了涡流流和循环模式的“前”视图,我们期望ωy中的涡度大于其他平面。图5,我们在y -z平面中显示了同一情况的涡度场,这就是φ=π/ 2的情况,在那里我们观察到涡度ωx and涡流和该平面上的循环大于其他组件。
格里菲斯大学,澳大利亚北森市凯瑟尔路170号,澳大利亚昆士兰州4111,昆士兰微型和纳米技术中心,格里菲斯大学,西克里克路,内森QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚M.Ryrybachuk@griffith.edgriffith.edu.au.au摘要,该文章的摘要是一项摘要,该文章的设计和交付的材料是在设计和交付的材料。或一些先于低级基本材料技术课程,包括新课程和学习。 高级课程实现了基于项目的体验学习方法,并采用了家庭硬件项目的反向材料工程(RME)分析,这些项目用作教学样本。 学习活动围绕着在实际情况下采用RME方法来进一步学习,以进一步学习工程材料在实践环境中的结构,性能和组成,并转化到更高水平的抽象来理解工具材料的实践应用和限制。 此外,基于项目的体验学习活动鼓励学生练习高阶思维,以在涉及现实世界问题的同时参与与学习者相关的项目的情况下获得知识深度。 关键词:材料科学教育,工程教育,逆向工程,基于项目的学习,通过执行学习,STEM教学1。格里菲斯大学,澳大利亚北森市凯瑟尔路170号,澳大利亚昆士兰州4111,昆士兰微型和纳米技术中心,格里菲斯大学,西克里克路,内森QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚M.Ryrybachuk@griffith.edgriffith.edu.au.au摘要,该文章的摘要是一项摘要,该文章的设计和交付的材料是在设计和交付的材料。或一些先于低级基本材料技术课程,包括新课程和学习。 高级课程实现了基于项目的体验学习方法,并采用了家庭硬件项目的反向材料工程(RME)分析,这些项目用作教学样本。 学习活动围绕着在实际情况下采用RME方法来进一步学习,以进一步学习工程材料在实践环境中的结构,性能和组成,并转化到更高水平的抽象来理解工具材料的实践应用和限制。 此外,基于项目的体验学习活动鼓励学生练习高阶思维,以在涉及现实世界问题的同时参与与学习者相关的项目的情况下获得知识深度。 关键词:材料科学教育,工程教育,逆向工程,基于项目的学习,通过执行学习,STEM教学1。格里菲斯大学,澳大利亚北森市凯瑟尔路170号,澳大利亚昆士兰州4111,昆士兰微型和纳米技术中心,格里菲斯大学,西克里克路,内森QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚澳大利亚QLD 4111,澳大利亚M.Ryrybachuk@griffith.edgriffith.edu.au.au摘要,该文章的摘要是一项摘要,该文章的设计和交付的材料是在设计和交付的材料。或一些先于低级基本材料技术课程,包括新课程和学习。高级课程实现了基于项目的体验学习方法,并采用了家庭硬件项目的反向材料工程(RME)分析,这些项目用作教学样本。学习活动围绕着在实际情况下采用RME方法来进一步学习,以进一步学习工程材料在实践环境中的结构,性能和组成,并转化到更高水平的抽象来理解工具材料的实践应用和限制。此外,基于项目的体验学习活动鼓励学生练习高阶思维,以在涉及现实世界问题的同时参与与学习者相关的项目的情况下获得知识深度。关键词:材料科学教育,工程教育,逆向工程,基于项目的学习,通过执行学习,STEM教学1。简介现代工程毕业生应理解,分析和提供解决广泛和复杂问题的解决方案 - 并具有参与和行使多学科和系统的方法的能力和能力