第2部分 - Morecambe Bay中的大型无脊椎动物和微塑料相互作用v Marecambe Bay中大型无脊椎动物的微塑料摄取v v微塑料对无脊椎动物的影响对无脊椎动物的影响对无脊椎动物的影响对其他研究v其他有关
了解地球系统不同隔室中大气人为碳(C)的重新分配是地球科学的优先事项。C周期的全球数值建模是理解大气,大陆和海洋之间C循环的基本工具之一。然而,地球系统模型和其他大规模模型仍然缺乏对沿着土地到海水连续体(LOAC)在调节陆地生态系统和海洋之间进行调节有机碳(OC)交换中的作用的全面描述。水生生态系统能够在其积累的沉积物中隔离有机碳(即有机碳埋葬(OCB))是了解LOAC在全球C周期中的作用的基本过程。然而,将此过程纳入C周期的大规模数值模型仍处于早期阶段。在这里,我们回顾了沿LOAC涉及的生态系统过程以及不同作者使用的术语,OCB测量方法,大规模C模型的结构,文献中可用的OCB速率以及其他用于建模目的的数据源。我们的目标是查明将LOAC沿LOAC纳入地球系统模型和其他大规模应用的障碍和潜在解决方案。我们确定在与LOAC沿LOAC沿着生态系统工作的不同科学学科中缺乏语言协调,并提出了有关OCB的受控词汇,以协助解决这一挑战。我们已经编制了沿LOAC(湖泊,水库,洪泛区和沿海生态系统)的生态系统的全局数据集,其中包括1163 OCB速率值,对应于713个单个生态系统,并在全球地理和生态系统中表现出强烈的偏见。我们还表明,几乎没有现有的大规模C模型沿LOAC融合OCB,尽管其中一些已经迈出了在全球范围内包含此过程的第一步。最后,我们分析了帮助铺平道路的挑战和潜在解决方案,以在C周期的大规模模型中沿LOAC整合OCB,包括在OCB建模研究中对多学科观点的迫切需求汇集了来自生态系统研究与LOAC研究的几个学科的研究人员。
A2007 1 OC DEPO计算为OCB速率X100/OCB EFF A2007 2 OCB EFF =平均值(1.8,2.3)A2007 3 OCB EFF =平均值(1.2,1.6)A2007 4 OCB EFF =平均值(4.5,6)A2007 5 OCB EFF =平均值OCB EFF = OCB EFF(0.7,1.1.8)A201.8)A2016 1.8/a2016 1.8/ocbe B2013 1 OCB EFF计算为OCB速率X100/OC DEPO D2008 1 OC含量按照作者指示的LOIX100/2.13计算(LOI:点火点的沉积物损失)。LSR计算为沉积的沉积物体积除以湖面积。F2014 1 OCB eff was calculated as OCB rate x100/OC depo G2013 1 OC content calculated as OCB rate x100/mean mass accumulation rates H2013 1 OC content calculated as OCB rate x100/sediment total (erosional+in-lake) mass accumulation rates K2013 1 age was determined by radiocarbon dating, paleomagnetic dating or deglaciation/ isolation of the basin.K2020 1 OCB EFF计算为OCB速率X100/OC DEPO。Molc M -2 y -1中的原始OCB速率值。M2004 1 OCB速率=平均值(31,137)。lsr =平均值(0.32,1.23) - Irion(1984)使用14 C年代计算出平均LSR为0.16 cm年-1。用于计算SED DEPO,OC DEPO和OCB EFF,数据取自Smith-Morrill(1987)。M2004 2 LSR =平均值(0.4,1.34)。OC含量被计算为沉降粒子中OC含量范围的平均值。sed depo和oc depo是所有站点的平均值。OCB EFF计算为OCB速率X100/OC DEPO。O2012 1 LSR =平均值(0.2,0.4)。OCB速率计算为全局OCB速率除以湖面面积。O2014 1 OCB速率=平均值(12,62)
- 参与A6.4机制支持并与不丹的宪法承诺保持在森林覆盖范围内的60%的土地和不丹的国际承诺,以维持碳中性地位。保护现有的林地和林业清除项目的实施可以改善森林,土壤,含水层,流域和生物多样性的健康,包括陆地和水生的生活,从而增强了生态系统服务,例如清洁水供应,木材和非木材林业和清洁空气,从而改善了当地人的生活。- 促进农业污染,气候智能农业,可持续土地管理土地和肥料管理活动应为不丹的粮食和营养安全做出贡献,为可持续发展目标1、2和3。
1。水资源:通过保护和保护水资源来增强水安全。改善综合水资源管理,并通过法规和技术措施确保水质。促进气候硫化的水存储和分配基础设施,例如为井,雨水收集和社区池塘。2。生物多样性:制定和实施综合的生物多样性保护计划,以保护和保护高保护价值领域。通过基于生态系统的适应来修复降级的栖息地,并建立新的保护区以确保受威胁生态系统的生存。改善湿地的健康状况(即Ramsar遗址)充当闸门,牧场,牧场和沙漠和保护水生的多样性和栖息地条件。3。改善针对气候诱发灾难的反应:通过优先考虑灾难挽救基础设施来加强气候诱发的灾难管理能力,
本文件总结了摄入塑料和相关化学物质对水生生物和依赖水生的野生动物的潜在化学毒性的科学现状。虽然本文件反映了 EPA 对塑料污染最佳可用科学的评估,但它不是法规,不会对 EPA、各州、部落或受监管社区施加具有法律约束力的要求,并且可能不适用于基于具体情况的特定情况。EPA 可能会在未来更改此文件。本文件已经过承包商主导的外部同行评审以及 EPA 内部的审查过程。EPA 科学技术办公室、健康和生态标准司的最终审查已经完成,该文件已获准发布。提及商品名称或商业产品并不构成认可或推荐使用。该文件可从以下网址下载:https://www.epa.gov/wqc/aquatic-life-ambient-water- quality-criteria 。
17.1简介17.2淡水生物地球化学和波罗的海流域的概述17.2.1波罗的海流域17.2.2变化波罗的海海17.2.3驱动器变化的驱动因素驱动器驱动器的变化,转换和出口生物源性元素对波罗西斯海和淡水生物地球化学17.3.1大气沉积和水传播通量17.3.2沿水连续体的养分转化17.3.3气候对大气沉积的影响及其对水上磁通的影响17.3.4当前和未来出口到波罗的海海洋17.4林业,韦特兰和淡水丛生的杂物17.4。管理实践的影响17.4.2.1清晰削减17.4.2.2现场准备17.4.2.3沟渠17.4.2.4多压力17.4.3碳沿水生的连续体的转变17.4.4气候对森林和湿地的水上损失的影响17.4.4.4.4.4.4.4.5区域和水传播通量17.5.1.1土地使用和养分负荷的长期趋势17.5.1.2营养负荷的最新趋势17.5.1.3农业和风化17.5.2养分沿水产延长的养分转变17.5.5.5.5.3.5.3淡水生物地球化学17.6.1水文变化和水源性通量17.6.2气候对管制河流的影响以及对水上通量的影响17.6.3当前和未来从管制的河流中出口17.7结论
抽象问题:线性栖息地是陆生和水生的走廊,可以是自然的或人为的。在这里我们问:两种类型的线性栖息地(道路和河流)的交集如何影响植物物种的多样性,成分和生态属性?地点:法国南部。方法:我们研究了道路河交叉点(桥梁),以测试路边和河滨植物群落中物种的组成,α和β多样性以及对桥梁影响的反应。我们还使用空间预测因子(空间特征向量图)来评估桥梁是否影响定向空间过程(上游向上河轴)结构社区组成。结果:我们表明,桥梁周围的植被与物种组成和生态偏好以及α和β多样性的植被不同于桥梁。我们还发现,桥梁河流和道路植物群落中物种的生态偏好融合。由于不同的干扰方案,桥梁的物种β多样性的周转成分较低,因此导致生物均匀化。然而,我们的结果表明,桥梁对影响物种组成的方向空间过程的影响可以忽略不计。结论:桥梁作为河流和道路的植物社区选择力的强烈影响表明,不应忽略桥梁。我们的发现将有助于开发对两种类型的线性栖息地的更有效管理,以保护其托管的植物物种以及相关的生态功能和所提供的生态系统服务。
Helaeomyia petrolei C. ,以前名为 Psilopa petrolei ,是一种不为人熟知的双翅目昆虫,可能因为其分布范围有限。它属于 Ephydridae 科。这种蝇类具有极端嗜好性,原产于美国,最早是在加利福尼亚州洛杉矶县拉布雷亚沥青坑的原油中发现的。H. petrolei 的独特之处主要在于它能耐受恶劣的水生环境(原油池)。该物种的幼虫会从石油池中摄取大量沥青,而不会产生任何不良影响。它们的肠道微生物也能耐受溶剂。尽管昆虫学家在 100 多年前就发现了这种蝇类,但人们并没有太多关注它。它仍有许多有趣的方面有待解开。本综述的目的是整理关于这种不受欢迎的双翅目昆虫的现有信息,并利用获得的信息进行学术、制药和工业应用,并鼓励对这种稀有物种进行进一步研究。本综述中讨论的溶剂耐受性有利于生物修复。因此,应利用 H. petrolei 和其他嗜极物种中耐溶剂的微生物群落的潜在制药和工业应用来获得诺贝尔科学发现。关键词:Helaeomyia petrolei、油蝇、嗜极生物、原油。引言昆虫在每一个可以想象的环境中都大量存在,无论是水生的还是陆地的。一些昆虫目,尤其是无处不在的双翅目,已经征服了水生环境并在所有大陆的水生生态系统中定居(Alder 和
在水生生态系统的水下是一个充满生命的微观宇宙,在维持这些环境的微妙平衡中起着至关重要的作用。水生微生物学探讨了各种水体中微生物的多样性和功能,从广阔的海洋到最小的淡水池塘。在水生环境中,最丰富,最多样化的微生物群是营养循环的关键参与者。例如,硝基瘤和硝化细菌参与硝化过程,将氨转化为氮气中的硝酸盐。一些细菌也有助于有机物的降解,在营养回收中起重要作用。从微观浮游植物到较大的宏观形式,藻类是带有光合作用的阳光的主要生产者。硅藻,鞭毛藻和绿藻是水生食物网的重要贡献者,通过生产有机化合物为各种生物提供了能量。这些单细胞真核生物是水生生态系统中重要的消费者。鞭毛,纤毛和变形虫在调节细菌种群,回收养分以及作为较高营养水平的食物方面起着作用。病毒虽然不是严格归类为生物体,但在水生环境中很丰富,并影响微生物种群。噬菌体,感染细菌的病毒可以调节细菌群落,影响养分循环和微生物多样性。水生微生物对于包括碳,氮和磷循环在内的营养循环过程至关重要。细菌和藻类有助于释放有机物的细分,从而释放出其他生物可以利用的营养。藻类和蓝细菌进行光合作用,将阳光转化为化学能。这个过程不仅支持这些微生物的生长,而且还为其他水生的能源提供了主要的能量