邮件:wakatuki@life.shimane-u.ac.jp内容1。在过去的70、800和1400年的世界历史上,谷物生产率(产量)与人口增长之间的关系2。撒哈拉以南非洲(SSA)国家的谷物产量最近提高了3.Sawah System Platform和Sawah Technology的定义,创世纪和演变4。改进的遗传和生态技术对水稻种植的共同进化的影响5。绿色革命的科学,技术与创新(STI)(GR)6。实现SSA 7的绿色革命的核心技术。IITA Research(1987/88)8。在灌溉的锯木树,雨落锯和非萨瓦的平台中,平均23个水稻品种的平均产量在高输入和低输入培养下(Ofori等,2005)9。在1961 - 2012年期间,SSA灌溉的进展非常缓慢,但SSA的灌溉潜力很大。10。将西非水稻土壤的生育能力与热带亚洲的“绿前和绿后革命”水稻土壤的生育能力进行比较。10.1。西部和中非及其土壤肥力的综合调查途径及其土壤肥力10.2。大米土壤fwetilit 11。在1961-2020期间SSA中肥料使用的趋势12。参考
进化枝是指由分子系统发育学中共同祖先(蛋白)衍生的后代(蛋白质)组成的人群。尽管许多被子植物大约有10 rbOH,但包括拟南芥在内的多核植物的rbohb以及草的rbohb和rbohhh均被归类为相同起源的蛋白质种群。 [纸信息]杂志名称:植物生理纸标题:CDPK5和CDPK13通过控制RBOH介导的ROS产生的ROS产生(CDPK5和CDPK13)在适应低氧(CDPK5和CDPK13)中起关键作用(CDPK5和CDPK13)在水稻中通过控制RBOH介导的反应性氧气的反应在水稻中起重要作用。
茨城县、栃木县、群马县、埼玉县、千叶县、东京都、神奈川县、山梨县、长野县、静冈县 水田 5 (4, 1, --, --) 大田作物 1 (-, 1, --, --) 露天蔬菜 13 (2, 2, 4, 5) 温室园艺 6 (2, 2, --, 2) 果树 7 (2, 2, 1, 2) 花卉 1 (-, --, --, 1) 茶 2 (1, --, --, 1) 畜牧业 2 (1, 1, --, --) 合计 37 (12, 9, 5, 11)
稻田有可能进行碳固换,但另一方面,也是作为碳转移到大气的来源,具体取决于土地管理实践。被水稻田的状况导致农业活动贡献大量的排放气体,例如甲烷(CH 4)。采用稻田管理很重要,以增加碳固换,以缓解全球变暖的努力。这项研究是通过描述性探索方法进行的调查研究,该方法是通过直接现场观察和实验室分析进行的。观察到的变量是土壤有机物,微生物C生物量,块状密度,pH,粘土含量,c大米生物量和水稻生物量重量。通过有目的的采样方法采样方法。数据是通过以一种方差分析和皮尔逊的相关性来计算总碳固存和统计测试来处理数据的。结果表明,不同的水稻田间管理会影响稻田上的总碳封存。在45.89吨/公顷的有机稻田中发现了最高的隔离,然后以38.03吨/公顷的半稻田为半有机稻田,而常规的稻田则是34.36吨/公顷的最低水田。确定碳螯合量的因素是土壤有机碳和微生物生物量碳。建议的土地管理建议是增加有机肥料,在半甲基和常规的水稻田间管理系统中,维持土壤耕作和在有机系统中的肥料的应用并扩大有机稻田。
农业碳排放量显着促进了全球温室气体。增强绿色和低碳农业实践对于中国的高质量经济发展至关重要,并实现了其“碳峰值和碳中立性”目标。这项研究的重点是农业的生态作用,将跨农业材料,土壤,水田和畜牧业的18种主要碳源纳入评估框架。它评估了2000年至2021年中国31个省份的农业碳排放量。采用Stirpat环境压力模型,该论文研究了中国农业碳排放的决定因素。此外,它还利用BP神经网络模型在各种开发方案下预测发射峰值趋势,并通过地理位置和时间加权回归(GTWR)模型验证这些预测以及其他方法。研究结果表明,在研究期间,中国总农业碳排放量相反,以初始增长的标志,随后是下降和显着的区域变化。这些排放的主要驱动因素是农业人口,人均农业GDP和农业技术水平。在绿色发展计划下,中国的农业部门预计将在2030年左右实现其“峰值CO 2排放”目标,而峰值变化很小。这项研究为在碳峰和中立目标的背景下,对中国农业的碳固存能力提供了宝贵的见解。它指导政府机构设计灵活,精确和中等的农业碳汇战略,增强区域农业合作,并促进中国农业的污染和减少碳的污染和碳减少,以实现其“碳峰值和碳中立性”的雄心。