在当代社会中,锂离子电池已成为主要的储能选择之一。li-ion电池的市场份额和特定的应用随着时间的推移大幅增长,并且仍在上升。许多杰出的科学家和工程师在1990年代开发商业锂离子电池方面非常努力,这导致了他们的成功。水或非水电器,阳极,阴极和膜,在允许通过离子的同时将两者分开的膜是所有电池系统的四个必需组件。虽然在电源系统中仍未充分利用,但电池是开发电动汽车行业的首选解决方案,尤其是与光伏和风能结合使用时。作为一种技术进步,局部电池为可持续能源生产和大量碳排放量提供了巨大的潜力。本评论涵盖了工作原理,阳极,阴极和电解质材料以及相关机制,衰老和性能降解,应用程序,制造过程,市场,回收和液管电池安全性。
氢(H 2)被广泛认为对工业和运输的脱碳至关重要。由可再生电力提供动力的水电解(通常称为绿色H 2)可用于产生H 2,二氧化碳排放率低。在此,我们分析了在三种不同的假设未来需求方案下与绿色H 2产量相关的关键矿物质和能源需求,范围从100 - 1,000 MTPA H 2。在每种情况下,我们计算建造水电器所需的关键矿物质需求(即,电极和电解质),并建造专用或其他可再生电源(即,风和太阳能)为电解器供电。我们的分析表明,使用铂金属金属和稀土元素的缩放电解仪和可再生能源技术可能会面临供应限制。特定数量的灯笼,Yttrium或虹膜需要增加电解剂的能力,甚至需要更多的新近矿物质,硅,锌,钼,铝和铜,以构建专用的可再生电力源。我们发现,根据某些能源过渡模型,将绿色H 2产量满足预计的净零目标将需要约24,000 TWH的专用可再生能源产生,这大约是2050年在2050年网格上的总量。总而言之,关键的矿物约束可能会阻碍绿色H 2的缩放,以满足全球净零排放目标,从而激发了对生成H 2的替代性,低排放方法进行研究和开发的需求。
摘要清洁能源技术的大量部署在到2050年达到碳中立性的策略中起着至关重要的作用,并允许随后的负CO 2排放以实现我们的气候目标。一个新兴的挑战,称为“从排放到资源”,强调了清洁能源技术对关键原材料(CRM)需求的显着增加。尽管存在充足的地质储量,但要考虑到环境和社会影响,确保对这些材料的可持续使用对于成功过渡到清洁能源至关重要。评论中心以四种可再生能源技术为中心,即太阳能光伏,风力涡轮机,锂离子电池和水电器。进行了数量检查的四种缓解途径,以评估其在减少这四种清洁能源技术的CRM供应链脆弱性方面的潜力:(i)提高材料效率,(ii)采用替代性策略,(iii)探索回收前景,以及(iv)促进重新安置的起始剂。重要的是要注意,没有一个缓解措施可以完全消除CRM供应的风险,而是所有四个杠杆的加速采用是必不可少的,可以将CRM供应风险最小化至其绝对最小值。因此,该研究强调了增加的研究,创新和监管计划的重要性,并提高社会意识,并有效地解决了CRM供应链面临的挑战,并为可持续的能源过渡做出了贡献。
可用的电池测试通道可能会部分解释为什么某些电池材料性能研究仅包含少数重复的数据。但是,与电解质配方,处理电极和电池组装相关的人体错误会导致电池性能变化。为了依靠结果,应最大程度地减少细胞间的可变性。Dechent等人的研究。10提出至少9个重复,以便能够使用一个参数来构建电池老化模型。系统的复杂性在很大程度上影响了提供可靠结果所需的重复数量,以使系统中的各种效果和反应分解。此外,主动学习和机器智能决策是o的,加上自动化,以形成“闭环”研究方法,在此之前,所有先前完成的步骤/实验都会为以下步骤提供信息,从而消除了古老的“试验和纠正”方法。2,11 - 13对于新的电池材料发现,闭环实验可以快速优化设计空间内的材料选择,发现比随机过程快的速度更快,并且经验更少。14在闭环方法中,高通量筛选使用自动化或半自动设置,以允许以高速率自动测量DE ned设计子空间。15高通量筛查的成功是显而易见的;杨等。16使用高通量光学测量值来识别三阵金属氧化物组成空间中的区域,其光学趋势不是简单的相混合物,而McCalla等人。17证明了一个工作 - 能够每周同时收集数百种X射线差异模式和电化学阻抗光谱光谱。在这项工作中,我们描述了在环境实验室环境中用于电解质配方,组装和循环的电解质配方,组装和循环的自动机器人设置。在环境气氛中工作比保持干燥的室的成本效率要高得多,该室有可能用电池材料允许环境氛围打开未铺设的电解质设计空间。我们的功能和容易修改的设置可以适应不同的系统(例如非水电器的非水解);可以在维护,调整或增强功能的同时轻松地集成硬件组件的添加或去除,以将Odacell描述为模块化设置。使用Odacell进行多种化学的可能性概括了其探索液体电解质的高研究潜力的适用性,由于庞大的设计空间,这仍然是对光学的挑战。13到达这一目标,这项工作的目标是(1)设计和构建具有电解质配方和分配能力的可效率的,模块化的电池组装和测试设置,(2)确定细胞对细胞之间的可变性以及在环境氛围中组装的单元系统的可变性,以及在环境中组装的细胞,并表明设置的实用性和性能,(3),(3)溶剂,即在全细胞结合中的水和二甲基亚氧化二甲基氧化二甲基。
可用的电池测试通道可能会部分解释为什么某些电池材料性能研究仅包含少数重复的数据。但是,与电解质配方,处理电极和电池组装相关的人体错误会导致电池性能变化。为了依靠结果,应最大程度地减少细胞间的可变性。Dechent等人的研究。10提出至少9个重复,以便能够使用一个参数来构建电池老化模型。系统的复杂性在很大程度上影响了提供可靠结果所需的重复数量,以使系统中的各种效果和反应分解。此外,主动学习和机器智能决策是o的,加上自动化,以形成“闭环”研究方法,在此之前,所有先前完成的步骤/实验都会为以下步骤提供信息,从而消除了古老的“试验和纠正”方法。2,11 - 13对于新的电池材料发现,闭环实验可以快速优化设计空间内的材料选择,发现比随机过程快的速度更快,并且经验更少。14在闭环方法中,高通量筛选使用自动化或半自动设置,以允许以高速率自动测量DE ned设计子空间。15高通量筛查的成功是显而易见的;杨等。16使用高通量光学测量来识别三阵金属氧化物组成空间中的区域,其光学趋势不是简单的相混合物,而McCalla等人。17证明了一个工作 - 能够每周同时收集数百种X射线差异模式和电化学阻抗光谱光谱。在这项工作中,我们描述了在环境实验室环境中用于电解质配方,组装和循环的电解质配方,组装和循环的自动机器人设置。在环境气氛中工作比保持干燥的室的成本效率要高得多,该室有可能用电池材料允许环境氛围打开未铺设的电解质设计空间。我们的功能和易于修改的设置可以适应不同的系统(例如非水电器的非水解);可以在维护,调整或增强功能的同时轻松地集成硬件组件的添加或去除,以将Odacell描述为模块化设置。使用Odacell进行多种化学的可能性概括了其探索液体电解质的高研究潜力的适用性,由于庞大的设计空间,这仍然是对光学的挑战。13到达这一目标,这项工作的目标是(1)设计和构建具有电解质配方和分配能力的可效率的,模块化的电池组装和测试设置,(2)确定细胞对细胞之间的可变性以及在环境氛围中组装的单元系统的可变性,以及在环境中组装的细胞,并表明设置的实用性和性能,(3),(3)溶剂,即在全细胞结合中的水和二甲基亚氧化二甲基氧化二甲基。