水是人类日常生活和自然资源中最重要的部分。水电是一种重要的可再生能源,既清洁又环保。由于快速的城市化和人口增长,能源需求不断增加。因此,我们没有足够的电力来满足我们的需求的日子并不遥远。为了避免如此黑暗的未来,可持续的水电项目是一个解决方案。但它需要适当的规划和完善的设计来克服挑战。水电站具有巨大的潜力,因为它可以成为发电的最佳解决方案之一。这是一篇评论论文。本研究论文旨在展示水电站水力发电的新兴概念。这将减少目前使用的电网对传统能源的需求。主要动机是通过现场可用的高效和非传统方式发电。
章节 水力发电厂频率调节取决于水库上游水位 Carlos A Platero 1*、José A Sánchez 2、Christophe Nicolet 3 和 Philippe Allenbach 4 1 马德里理工大学电气工程系,ETSI Industriales,西班牙 2 马德里理工大学水利、能源与环境工程系,ETSICCP,西班牙 3 Power Vision Engineering,Chemin des Champs-Courbes 1,瑞士 4 洛桑联邦理工学院,EPFL STI STI- DEC GR-SCI-IEL,ELG 033 (Bâtiment ELG),瑞士 *通讯作者:Carlos A Platero,马德里理工大学电气工程系,ETSI Industriales,C/José Gutiérrez Abascal, 2, 28006 Madrid,西班牙 2017 年 3 月出版27,2020 本书章节是 Carlos A Platero 等人发表的一篇文章的转载。于 2019 年 4 月在 Energies 上发表。 (Platero, CA;Sánchez, JA;Nicolet, C.;Allenbach, P. 水电站频率调节取决于上库水位。Energies 2019, 12, 1637。)如何引用本书章节:Carlos A Platero、José A Sánchez、Christophe Nicolet、Philippe Allenbach。水电站频率调节取决于上库水位。引自:Phattara Khumprom、Mladen Bošnjaković 编辑。能源研究的进展。印度海得拉巴:Leaf Vide。 2020 年。
本报告最初于 2023 年 9 月发布,并于 2024 年 3 月进行了修订,以改进和纠正水管组件技术规格和成本的计算,使模型与报告中引用的 1990 年 EPRI 抽水蓄能规划和评估指南更加一致。我们现在分别计算或假设压力水管、尾水管和其他隧道的最大流速,这些值可告知隧道直径、排放速率和成本。隧道直径现在反映了所有水管组件的隧道数量。现在,每个水管的成本取决于该特定组件的长度,并且估算水管长度的方法已更新,以更好地匹配 EPRI 报告中的指导。水管成本现在还包含单位数量或隧道数量(如适用)。当选择地面压力水管时,其长度的估算方式与地下压力水管相同。
• 选项 2:要查看西班牙语字幕,请按照以下网址:https://rossstrategic.spf.io/z 。如果您点击此 URL,您将打开一个新窗口,其中您可以选择西班牙语字幕。字幕将出现在这个新窗口中。
摘要:美国已开始前所未有的努力,到 2050 年实现所有经济部门的脱碳,这需要迅速部署可变可再生能源技术和电网规模的能源储存。抽水蓄能水电 (PSH) 是一种成熟的技术,能够提供电网规模的能源储存和电网弹性。关于与最先进的 PSH 技术相关的温室气体排放生命周期的信息有限。本研究的目的是对美国新的闭环 PSH 进行完整的生命周期评估,并评估输送到最近的电网变电站连接点的 1 kWh 储存电力所产生的全球变暖潜力 (GWP)。在本研究中,我们使用了处于初步许可阶段的 PSH 设施的公开数据。建模边界是从设施建设到退役。我们的结果估计,美国闭环 PSH 的 GWP 范围为 58 至 530 g CO2e kWh-1,其中储存的电网组合的影响最大,其次是设施建设中使用的混凝土。此外,PSH 场地特征会对 GWP 产生实质性影响,棕地场地的 GWP 比绿地场地低 20%。我们的结果表明,闭环 PSH 比其他储能技术具有气候优势。关键词:抽水蓄能水电、储能、生命周期评估、能源可持续性、水力、水力发电、温室气体排放 ■ 简介
本文重点研究短期梯级水力调度问题,特别是在竞争环境,即市场条件下。提出了一种非线性随机优化方法,将水力发电量作为每小时电力市场价格和水释放率的函数。为了解决基于土耳其梯级水力发电设施之一的案例研究,所提出的方法已成功应用于各种问题,计算时间可忽略不计,同时提供更高的利润。本文展示了应用基于拟牛顿法的模型可以实现的好处,该方法可以找到解决某种类型优化函数的零点或局部最大值和最小值,因为它可以更好地处理问题的不确定性、约束和复杂性。十年每小时水流入数据和电力市场价格被用作输入,并比较了级联和单一优化的结果。与每个水电站 (HPP) 的运行分别进行的比较研究表明,使用级联变体可获得 18% 的收入。
北欧电力系统中可变可再生能源的日益普及导致频率质量下降,并增加了水电站提供一次频率控制的重要性。水电是世界上最大的可再生能源。它的可靠性、可控性和可调度性以及巨大的存储量使其成为北欧电力系统中提供频率调节的最重要来源。许多提供调节电力的水电站都配有卡普兰涡轮机,这些涡轮机具有复杂的机械系统。此外,提供频率调节的卡普兰涡轮机频繁而快速的机械运动导致涡轮机导叶和转轮叶片磨损的问题。卡普兰涡轮机适合稳定运行。为了缓解这个问题,本文研究了一种混合水电站与电池储能系统相结合的解决方案,其中电池可以处理快速的频率偏差,从而使涡轮机更稳定地运行。分析基于水电站提供的 FCR-N 服务,因为 FCR-N 被确定为需要水电站输出功率非常快速变化的服务之一。本论文主要采用建模与仿真、数据分析和现场测量作为研究方法。为进行分析,开发了水电站和混合水电站的仿真模型。使用瑞典典型水电站的数据验证了水电站的仿真模型。磨损的量化是研究的重点。从涡轮机的磨损、电站对频率偏差的响应速度以及涡轮机机械运动过程中的方向变化次数等方面比较了水电站和混合水电站的性能。最后得出结论,在水电站中增加电池将减少涡轮机的磨损,并提高北欧电力系统的频率质量。
Karen 概述并更新了这项研究。她明确表示,这项研究没有推广或提出任何具体的 PSH 项目。Karen 随后概述了这项研究的下一步计划,包括未来的全州会议和部落论坛(请参阅本摘要末尾的时间表和日期详情)。未来的会议将重点关注各种主题,包括但不限于水生生态学、水质、陆地生态学、地质学、土地使用以及许可和执照。Karen 还介绍了低影响水文研究所 (LIHI) 的 Surabhi Karambelkar,他简要介绍了他们的工作,即定义什么是低影响的抽水蓄能项目。在 Karen 演讲结束时,一位参与者问道,为什么在还有其他选择的情况下,该州似乎专注于 PSH。Karen 澄清说,该州正在考虑许多清洁能源选择,这项研究是在响应州立法机构对 PSH 进行研究的指示(众议院第 1216 号法案第 306 节,2023 年)。
在过去二十年中,电力系统面临着越来越苛刻的运营要求。这些具有挑战性的运营条件是由多种因素造成的,包括负荷增长、基础设施老化、分布式能源 (DER) 的渗透率不断提高、经济电气化以及脱碳等政策举措。电力系统及其组件必须提供高度的运营灵活性,以缓解这些挑战。例如,风能和太阳能等间歇性 DER 的普及增加了对水电站等传统发电资产的需求,以应对突然的负荷发电不平衡。水电站对灵活性的要求越高,磨损就越大,可能会缩短水电涡轮机的使用寿命。为了减少水电站跟踪调度信号突然变化的需要,我们研究了它们与储能系统 (ESS;“基于 ESS 的混合”) 的联合运行。我们的分析侧重于通过基于 ESS 的混合来延长水电站的使用寿命。水电涡轮机(尤其是弗朗西斯涡轮机)的磨损使用寿命损失概念建模,该概念基于涡轮机因各种运行周期而遭受的损坏。然后,我们表明使用 ESS 抵消一些高变化可以延长水电站的剩余寿命。为了证明这一点,我们为这项工作开发了一些建模工具:(1)涡轮机及其调速器各个部件的动态模型;(2)一种控制策略,将缓慢变化的调度信号分配给水电机组,将快速变化的信号分配给 ESS,以使总功率请求保持不变;(3)财务分析模型,以量化这种框架的经济效益。我们使用我们开发的模型来分析实际水电站的调度模式,该水电站的功率输出为 50 MW,水头高度为 152 m。这项工作表明,基于 ESS 的混合可以将水电站的寿命平均延长 5%。然后使用这种寿命延长来估计与水电站维护和更换相关的成本延期的经济效益:平均为 360 万美元。针对 ESS 的大小和涡轮机的成本进行了敏感性分析,以显示收益在涡轮机成本和 ESS 大小范围内的变化。至关重要的是,将损害减少和寿命延长与其他 ESS 价值流(例如提供辅助服务)叠加在一起可以大大增加基于 ESS 的混合的经济效益。当多个价值流叠加并共同优化以获取最大收益时,与适当大小的 ESS 相关的更高成本将更具经济意义。未来将在未来的工作中探索这一维度。
摘要 — 电池储能系统 (BESS) 是可再生能源集成度高的电力系统的重要资产,可通过控制为电网提供各种关键服务。本文介绍了使用具有电网跟踪 (GFL) 和电网形成 (GFM) 控制的兆瓦级 BESS 以及径流式 (ROR) 水电站恢复区域电力系统的实际经验。为了证明这一点,我们进行了集成实际 GFL 或 GFM 控制的 BESS 和负载组的电力硬件在环实验。本文给出的模拟和实验结果都展示了 GFL 或 GFM 控制的 BESS 在电力系统黑启动中的不同作用。结果为系统运营商提供了进一步的见解,了解 GFL 或 GFM 控制的 BESS 如何增强电网稳定性,以及如何在小容量 BESS 的支持下将 ROR 水电站转换为具有黑启动功能的装置。结果表明,与传统自下而下的方法相比,ROR 水电站与 BESS 相结合有潜力成为执行自下而上黑启动方案的使能要素之一,从而增强系统的弹性和稳健性。