对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
摘要 海上自主水面舰艇 (MASS) 正在接近现实,为海上控制系统带来了新的复杂性和关键性。在本文中,我们研究了如何使用形式化方法 (FM) 来设计和验证海上控制系统,以实现安全有效的 MASS。FM 是一系列基于数学的规范和验证方法。我们首先对 FM 进行高级介绍。我们讨论了当前的海上控制系统认证实践和走向自主化的需求。我们给出了三个具体示例,说明如何应用 FM 来满足这些需求:COLREG 的形式化规范、基于合同的设计和基于模拟的测试的自动化。最后,讨论了 FM 的一些局限性。我们得出结论,FM 似乎是满足部分自主性需求的有希望的候选者,并鼓励对 MASS 的 FM 进行进一步研究。关键词 海上自主水面舰艇、形式化方法、验证、规范、保证 简介 海上自主水面舰艇 (MASS) 正在接近现实,正在进行的项目众多,从小型研究原型到全尺寸工业船舶。虽然存在几种程度的自主性,但 MASS 的典型特点是能够在非平凡操作中独立于人类操作员运行,需要态势感知和规划能力。这些特点使得 MASS 开发人员需要新的设计方法,监管机构 (IMO 2021、NMD 2020) 和船级社 (DNV 2018) 也需要新的安全保证方法和流程。形式化方法 (FM) 是一类基于数学的规范和验证方法,源自理论计算机科学 (Woodcock 等人2009)。FM 提供高水平的保证,因此几十年来一直被积极用于其他行业(如航空航天和铁路)关键系统的开发和验证。随着自主系统的出现,FM 被认为是解决它们带来的一些保证挑战的有希望的候选者。这导致了过去十年来对应用于自动驾驶汽车和飞行器的 FM 的积极研究(Luckcuck 等人2019)。海运业尚未看到 FM 的广泛采用。然而,这种情况似乎正在改变,因为去年发表了一些文章。Shokri-Manninen 等人。福斯特等人。(2020) 创建了一个基于自动机的单船相遇正式模型,并综合了一种构造正确的导航策略。Park 和 Kim (2020) 基于可达性分析,综合了一种构造正确的船舶自动停靠控制器。(2020) 提出了一种混合动力系统形式的自主船舶控制器,并使用自动定理证明器来验证一些安全不变量。本文旨在通过首先进行高级介绍,引起海事界对 FM 的关注。接下来,我们回顾当前海事控制系统设计和验证的实践,并讨论一些走向自主化的需求。然后,我们在三个特定用例中激励并演示了 FM 的使用,以满足这些需求。最后,我们讨论一下 FM 的一些局限性。
除了持续的“全场”扫描之外,对于所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他替代方案无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
根据天体(通常是太阳、月亮或特定恒星)的位置来确定自己在地球表面的位置,这种技术需要依靠晴朗的天空和高精度的天文钟。天文导航是几个世纪以来水手必备的技能,现在海军认识到不能只依赖 GPS,因此天文导航再次被教授给年轻水手。另一种关键的 GPS 无法使用的导航方法是惯性导航,它通过测量船舶或其他平台在所有三个维度上的加速度来提供其速度和位置。曾经非常庞大且昂贵,目前的固态惯性导航装置正变得越来越小、越来越便宜,使其能够用于小型水面舰艇甚至无人水下航行器 (UUV)。
背景 战斧导弹是一种高精度亚音速导弹,由喷气发动机驱动,可从海军水面舰艇和潜艇发射。它可以飞行 500 多英里,沿着预先设定的路线飞行,并跟随特定的地形特征到达目标。战斧对陆攻击导弹可以携带 1,000 磅级高爆弹或子弹药弹头。CALCM 也由喷气发动机驱动,但由 B-52 轰炸机发射。它使用来自全球定位卫星系统的信号按照预先设定的路线飞行,并携带常规爆炸弹头。CALCM 的精确度大约是战斧的一半。这两种武器都能够攻击固定或不易重新定位的陆地目标。战斧导弹的另一种变体被设计用于攻击海上船只。
Code 45 为美国海军和盟国海军无人潜航器 (UUV)、无人机 (UAV)、潜艇和水面舰艇发射系统以及潜射导弹及有效载荷提供科学、工程和舰队支持服务。该团队设计、开发、集成、测试、部署和维护 UUV 和 UAV;水下武器和对抗措施的发射、回收、存放和处理系统;以及武器和有效载荷(包括战斧和鱼叉导弹)的支持系统。Code 45 的目标是提高舰队的战术和防御灵活性、模块化和有效载荷量,同时保持可持续性和经济实惠。这个多元化的团队通过提供全方位支持来支持这一目标,从尖端研究到在潜艇上并肩提供操作员支持。
美国海军、空军、美国国家航空航天局和其他组织都为结构健康监测传感器、数据采集硬件以及处理和解释结果数据的技术的开发做出了贡献,这些数据可用于从民用基础设施到太空飞行器等各个领域。一套前景光明的传感器和数据采集硬件,是根据与美国国防部和美国国家航空航天局签订的多项合同开发的,最近获得了商业开发和生产的许可。本报告中详述的研究调查了新的商用现成结构健康监测硬件是否适合用于海军或商用水面舰艇,如果不适合,海军应该研究哪些改进或修改,以开发能够检测在役船舶结构缺陷的健康监测系统。