摘要:工业 4.0 的数字孪生概念将为风能转换系统带来许多优势,例如,在状态监测、预测性维护和控制或设计参数优化方面。虚拟副本是数字孪生的核心。要构建虚拟副本,必须为涡轮机组件选择适当的建模技术。选择这些模型时必须考虑数字孪生的预期用例,在模型保真度和计算负载之间找到适当的平衡。这篇评论文章概述了有关涡轮机空气动力学、结构和传动系统力学、永磁同步发电机、电力电子转换器以及俯仰和偏航系统的建模技术的最新文献。对于每个组件,都给出了具有不同模型保真度和计算负载的模型的平衡概述,范围从简化的集中参数模型到基于高级数值有限元方法 (FEM) 的模型。文献综述的结果以图形方式呈现,以帮助读者进行模型选择。在此基础上,提出了数字孪生的高级结构以及具有最小计算负载的虚拟副本。提出了多级分层虚拟副本的概念。
摘要:电动和混合电动飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计之间差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。
为了在可接受的仿真时间内获得准确的寿命评估结果,以满足全生命周期设计标准,本文提出了一种基于循环神经网络 (RNN) 的模型来替代 Simulink 模型。首先建立永磁同步发电机 (PMSG) 的平均开关 (AS) 模型和平均基波 (AF) 模型来计算累积损伤。然后,在相同的任务概况下,计算并比较 AS 和 AF 模型的结温、雨流计数和累积损伤。可以看出,AS 模型可以更准确地计算组件的可靠性,因为该模型既考虑了负载变化引起的大热循环,也考虑了基波交流电流引起的小热循环。然而,与 AF 模型相比,它耗费更多时间。为此,提出使用 RNN 模型来替代系统可靠性评估程序中最耗时的部分。借助所提出的模型,与 Simulink 模型相比,可以大大减少所耗时间。最后,通过一个1小时的案例验证了RNN模型的有效性。测试用例的平均绝对百分比误差(MAPE)为0.51%,RNN模型得出结果的时间小于1秒。此外,还实施了一个年度案例来验证RNN模型,全年平均MAPE为0.78%。
摘要:全球安装的风力涡轮机的累计容量不断增加,证明了人们对风能的兴趣日益浓厚。本文介绍了一种风能转换系统的实验研究,该系统使用一种非常特殊的交流发电机,不同于双馈感应发电机 (DFIG) 或永磁同步发电机 (PMSG)。我们推荐的发电机类似于倒置安装的电励磁同步发电机 (EESG)。它配备了一个多极电感定子,由直流电供电,还有一个环形转子,通过该转子将产生的替代电能分配到公用电网。将相对较低的直流电选择性地注入多极定子,可以在发电机的端子上产生用户所需的电压。这种绕线转子替代发电机 (WRAG) 以同步模式运行。此外,结合转子侧的电力电子接口 (PEI) 转换器,WRAG 可以在低风速范围内将产生的电压调整到公用电网的频率,而无需变速箱。在 3 kVA 机器上进行了实验验证,可以说它是 PMSG 和 DFIG 的中间解决方案,在偏远地区和农业农场具有更高的可靠性。
摘要:电动和混合动力飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天工业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。
摘要:电动和混合动力飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天工业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。
摘要。基于永磁同步电动机 (PMSM) 的机电执行器 (EMA) 目前用于各种飞机系统,并且在安全关键应用中越来越广泛。与其他电机相比,PMSM 具有高功率重量比和低齿槽效应:这使它们适合位置控制和致动任务。EMA 在模块化、机械简单性、整体重量和燃油效率方面比液压伺服执行器具有多项优势。同时,与液压执行器相比,它们的基本可靠性固有较低。然后,将 EMA 用于安全关键飞机系统需要采用风险缓解技术来解决这个问题。在此框架中,诊断和预测策略可用于系统健康管理,以监视其行为以寻找最常见或最危险故障模式的早期迹象。我们提出了一种基于 PMSM 的 EMA 低保真模型,用于基于模型的诊断和预测监测。该模型具有计算成本低的特点,允许近乎实时地执行,并且在模拟故障系统操作时具有适当的精度。通过将其行为与用作模拟测试台的更高保真度模型进行比较来验证此简化的模拟器。
摘要:电动和混合动力飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天工业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。
(1) MP Bendsøe 和 N. Kikuchi,“使用均质化方法在结构设计中生成最佳拓扑”,Comp. Methods in Appl. Mech. Eng.,第 71 卷,第 197-224 页,1988 年。 (2) MP Bendsøe 和 O. Sigmund,拓扑优化,理论、方法和应用,Springer,2004 年。 (3) Hidenori Sasaki 和 Hajime Igarashi,“使用傅里叶级数对 IPM 电机进行拓扑优化”,Journal of Electrical Engineering (B),第 137 卷,第 3 期,第 245-253 页,2017 年 3 月。 (4) Y. Tsuji 和 K. Hirayama,“使用基于函数扩展的折射率分布的拓扑优化方法设计光路设备”,IEEE Photonics Technol. Lett., (5) T. Sato、H. Igarashi、S. Takahashi、S. Uchiyama、K. Matsuo 和 D. Matsuhashi,“使用拓扑优化实现内置永磁同步电机转子形状优化”,《电气工程杂志 (D)》,第 135 卷,第 3 期,第 291-298 页,2015 年 3 月。 (6) S. Kobayashi,“实数编码 GA 的前沿”,《人工智能杂志》,第 24 卷,第 1 期,第 147-162 页,2009 年 1 月。 (7) T. Sato、K. Watanabe 和 H. Igarashi,“基于正则化高斯网络的电机多材料拓扑优化”,《IEEE 会刊》, (8) S. Hiruma、M. Ohtani、S. Soma、Y. Kubota 和 H. Igarashi,“参数和拓扑优化的新型混合:应用于永磁电机,”IEEE Trans. Magn.,第 57 卷,第 7 期,8204604,2021 年 (9) Y. Otomo 和 H. Igarashi,“用于无线电源传输设备的磁芯 3-D 拓扑优化,”IEEE Trans. Magn.,第 55 卷,第 6 期,8103005,2019 年。 (10) K. Itoh、H. Nakajima、H. Matsuda、M. Tanaka 和 H. Igarashi,“使用带归一化高斯网络的拓扑优化开发用于缝隙天线的小型介电透镜,”IEICE Trans. Electron., E101-C 卷,第 10 期,第 784-790 页,2018 年 10 月。 (11) N. Hansen、SD Müller 和 P. Koumoutsakos,“通过协方差矩阵自适应降低去随机化进化策略的时间复杂度(CMA-ES),”进化计算,第 11 卷,第 1 期,第 1-18 页,2003 年。 (12) N. Aage、E. Andreassen、BS Lazarov 和 O. Sigmund,“用于结构设计的千兆体素计算形态发生”,自然,第 550 卷,23911,2017 年。
本文提出了一种用于飞机应用的高速开关磁阻 (SR) 驱动器,以满足更多电动飞机 (MEA) 的需求,并证明了这种机器技术相对于其他技术(例如永磁同步发电机)的特殊优势。选择了适合高速直流配电网的电机和功率转换器的拓扑结构。首先,详细描述了通过 FEM 进行的发电机电磁设计,重点关注扭矩波动问题,并指出了一些改进方法,这些方法基于对定子和转子几何形状以及相位激活和停用角的迭代优化。然后,还分析了电力电子的设计,从仿真模型中获得所需的模块和冷却系统,使用最大和平均电流水平以及占空比。该模型是从发电机电磁设计发展而来的,并集成了控制策略,负责控制直流链路电压。还使用 FEM 分析和仿真模型的迭代程序来验证系统的热行为和机械行为。最后,讨论了完整电力驱动的集成,其标准是将系统保持在可用空间内并将温度保持在最高限值以下。飞机设备的应用对坚固性、低维护性、