作者要以按字母顺序为以下个人来审查并提供有关本文早期版本的有价值的反馈和建议:Jennifer Bender(State Street Global Advisors); Ginevra Berti-Mei(Norges银行投资管理);丹尼尔·加拉格尔(Daniel Gallagher)(PRI);帕特里克·杜普莱西斯(Norges Bank Investment Management);理查德·曼利(Richard Manley)(CPP投资); Udo Riese(Allianz SE); Faith Ward(Brunel养老金伙伴关系,IIGCC)。在LSEG,David Harris,Solange Le Jeune,Hannah Layman和Arne Staal也提供了深思熟虑的投入和支持。审稿人以其个人身份提供反馈,不一定认可报告的发现或建议。所有错误和遗漏仍然是作者的唯一责任。
长期以来,两个显着的限制一直阻碍了最佳运输方法与机器学习的相关性。首先,O(n 3)基于标准样本求解器的计算成本(在n个样品的批次上使用时)是过于刺激的。第二,质量保护约束使OT求解器在实践中过于刚性:因为它们必须匹配两种措施的所有点,因此离群值可能会大大影响其输出。最近的作品量已经解决了这些计算和建模的局限性,但导致了两种单独的方法菌株:虽然熵正则化大大改善了计算前景,但最近的O(N)线性低率溶剂溶液的最新OF-(N)线性低率溶解度却保持了进一步扩展OT的承诺。在建模的灵活性方面,由于OT的不平衡变体可以惩罚其边际偏离源和目标分布指定的耦合的耦合,因此可以对熵正则化的批量保护的刚度进行刚性。本文的目的是合并这两种菌株,即低级别和不平衡,以实现既可以扩展又相反的求解器的承诺。我们提出了自定义算法,以实现这些扩展问题,以解决线性的OT问题及其融合的Gromov-Wasserstein概括,并证明了它们与具有挑战性的空间转录组学匹配问题的实际相关性。这些算法是在OTT-JAX工具箱中实现的[Cuturi等。,2022]。
由于电网的变化性质,能够在大型电网中求解高保真最优潮流模型变得越来越重要。这种高保真问题称为交流最优潮流 (ACOPF),是一个非线性、非凸优化问题。解决此类问题的少数可靠方法之一是内点法。这些方法会产生稀疏线性系统,其中系数矩阵是对称的、不确定的并且通常是病态的。因此,它们对于稀疏线性求解器来说尤其具有挑战性,并且代表了求解 ACOPF 问题时相当大的计算瓶颈。在本文中,我们介绍了一个线性系统存储库,该存储库由开源优化器 IPOPT 求解 ACOPF 问题时捕获。这些矩阵旨在用作稀疏线性求解器开发的测试套件。
摘要 量子计算机是模拟多体量子系统的有前途的工具,因为它们比传统计算机具有潜在的扩展优势。虽然人们在多费米子系统上投入了大量精力,但在这里我们用收缩量子特征求解器 (CQE) 模拟了一个模型纠缠的多玻色子系统。我们通过在量子比特上编码玻色子波函数将 CQE 推广到多玻色子系统。CQE 为玻色子波函数提供了一个紧凑的假设,其梯度与收缩薛定谔方程的残差成正比。我们将 CQE 应用于玻色子系统,其中 N 个量子谐振子通过成对二次排斥耦合。该模型与量子设备上分子系统中耦合振动的研究有关。结果表明,即使在存在噪声的情况下,CQE 也能以良好的精度和收敛性模拟玻色子过程(例如分子振动)。
使用量子计算机现在可作为云服务可用,可以显示一个可以显示量子优势的应用程序。自然,数据管理是候选领域。工作解决方案需要设计混合量子算法的设计,其中量子计算单元(QPU)和经典计算(通过CPU)合作解决问题。此演示说明了针对数据库架构匹配的NP-HARD变体的端到端解决方案。我们的演示旨在进行教育(希望鼓舞人心),使参与者能够探索关键的设计决策,例如基于QPU和CPU计算的阶段之间的移交。它还将允许参与者通过嬉戏的互动体验动手实践 - 问题尺寸超过当今QPU的局限性。
摘要:近期量子设备有望彻底改变量子化学,但是使用当前嘈杂的中间尺度量子(NISQ)设备的模拟由于其对错误的敏感性很高,因此不实用。这激发了NISQ算法的设计,利用经典和量子资源。虽然有几个发展显示了地面模拟的有希望的结果,但将算法扩展到激发态仍然具有挑战性。本文介绍了受戴维森算法启发的两种具有成本效益的激发算法。我们将Davidson方法实施到量子自符合方程式统一耦合群集(Q-SC-EOM- UCC)兴奋状态方法适用于量子硬件。讨论,实施和测试了产生所需激发态的电路策略。通过模拟H 2,H 4,LIH和H 2 O分子的模拟,我们证明了所提出的算法(Q-SC-SC-EOM-UCC/Davidson及其变异变体)的性能和准确性。与古典戴维森方案类似,Q-SC-EOM-UCC/Davidson算法能够瞄准所需特征的少数激发态。
我们介绍了一种基于量子虚时间演化 (QITE) 高效解决 MaxCut 问题的方法。我们采用线性 Ansatz 进行幺正更新和不涉及纠缠的初始状态,以及在给定图和切除两个边的子图之间插值的虚时间相关哈密顿量。我们将该方法应用于数千个随机选择的图,最多有 50 个顶点。我们表明,对于所有考虑的图,我们的算法表现出 93% 及以上的性能,收敛到 MaxCut 问题的最大解。我们的结果与经典算法(例如贪婪算法和 Goemans-Williamson 算法)的性能相比毫不逊色。我们还讨论了 QITE 算法的最终状态与基态的重叠作为性能指标,这是其他经典算法所不具备的量子特征。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
1个学生,2个学生,3个学生1计算机科学与工程,1 Sreenidhi科学技术研究所,印度城市摘要:由于技术进步,机器学习和深度学习变得越来越重要。手写识别,机器人技术,人工智能以及更多的行业现在正在使用机器学习和深度学习方法。这样的系统需要数据培训,使我们的机器可以学习并做出必要的预测。在这项研究中,证明了具有可观精度为98%的手写方程求解器。它是使用卷积神经网络和某些图像处理技术对手写数字和数学符号进行了训练的。数字0到9的图像,plus和sinus符号(+),手写符号 *构成数据集。为了提取功能,我们将使用轮廓提取。在此项目中,我们使用卷积神经网络构建模型,并训练该模型以评估手工编写的方程式,我们使用数字和操作员手工编写的数据集。给出了手写方程的输入图像,将图像转换为灰色背景,为此,我们使用轮廓提取来获取特征。输出是通过评估方程式