本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
− − 是一个基于 Landau-Ginzburg-Devonshire (LGD) 理论计算铁电单晶和薄膜热力学单畴平衡态及其特性的程序。利用 SymPy 库的符号操作,可以求解控制方程以及适当的边界条件,从而快速最小化晶体的自由能。利用流行的差分进化算法,通过适当的混合,可以轻松生成多个相图,例如块体单晶的压力-温度相图和单畴薄膜系统的常见应变-温度相图。此外,可以同时计算稳定铁电相的多种材料特性,包括介电、压电和电热特性。对薄膜和单晶系统进行了验证研究,以测试开源程序的有效性和能力。
当今的中型量子计算机虽然不完美,但已经能够执行明显超出现代经典超级计算机能力的计算任务。然而,到目前为止,量子大规模解决方案仅针对有限的问题集实现。这里采用基于相位估计和电路宽度和深度的经典优化的混合算法来解决科学和工程领域中普遍存在的一类特定大型线性方程组。引入了基于相关相位估计幺正运算的纠缠特性的线性系统分类,从而能够通过简单的矩阵到电路映射高效地搜索解决方案。在几台 IBM 量子计算机超导量子处理器上实现了一个 2 17 维问题,这是量子计算机解决线性系统的破纪录结果。演示的实现为未来线性方程组解的量子加速探索设定了明确的基准。
[1] Arute, F.、Arya, K.、Babbush, R. 等人。使用可编程超导处理器实现量子霸权。《自然》574,505–510(2019 年)。https://doi.org/10.1038/s41586-019-1666-5A。[2] Harrow, A. Hassidim 和 S. Lloyd,“线性方程组的量子算法”,《物理评论快报》103,150502(2009 年)。[3] Yudong Cao 等人,“用于求解线性方程组的量子电路设计”,《分子物理学》110.15-16(2012 年),第 1675–1680 页。arXiv:arXiv:1110.2232v2。[4] Solenov, Dmitry 等人。 “量子计算和机器学习在推进临床研究和改变医学实践方面的潜力。”密苏里医学第 115,5 卷 (2018):463-467。[5] C. Outeiral、M. Strahm、J. Shi、GM Morris、SC Benjamin 和 CM Deane,“量子计算在计算分子生物学中的前景,”WIREs Comput. Mol. Sci.,2020 年 5 月。[6] 王胜斌、王志敏、李文东、范立新、魏志强和顾永健,“量子快速泊松求解器:算法和完整模块化电路设计,”量子信息处理第 19 卷,文章编号:170 (2020)。 [7] H. Abraham 等人,“Qiskit:量子计算的开源框架”,2019 年。 [8] https://quantum-computing.ibm.com/ [9] Sentaurus TM 设备用户指南,Synopsys Inc.,美国加利福尼亚州山景城,2020 年。 [10] https://qiskit.org/textbook/ch-applications/hhl_tutorial.html [11] https://qiskit.org/documentation/stubs/qiskit.quantum_info.state_fidelity
在大学大型部门的课程中安排时间表是一个非常困难的问题,并且经常通过以前的许多作品来解决,尽管结果部分是最佳的。这项工作通过使用遗传理论来解决时间表问题,以获取一个随机且完全最佳的时间表,并能够为拼贴画中的每个阶段生成多条解决时间表,从而实现了进化算法的原理。主要想法是在发现约束区域的同时自动生成课程时间表,以获得最佳且灵活的时间表,而不会通过更改可行的课程时间表而没有冗余。这项工作中的主要贡献是通过增加不同副本来生成最佳时间表时间表的灵活性来指示的,这是通过增加校园中每个阶段的最佳时间表并在需要时替换时间表的能力的可能性。本文中使用的进化算法(EA)是遗传算法(GA),它是基于进化人群的常见的多溶液元数据搜索,可以应用于解决时间表问题(例如时间表问题)的复杂组合问题。在这项工作中,所有意见:课程,教师和时间由一个阵列演示,以实现本地搜索,并通过使用启发式跨界跨越来确保基本条件不会被打破来实现时间表。这项工作的结果是一个灵活的调度系统,它显示了所有可能根据用户条件和需求创建的可能创建的时间表的多样性。简介:关键词:约束,进化算法(EA),健身函数,遗传算法(GA),时间表时间表(TTS)。
最近,受量子退火的启发,许多专门用于无约束二元二次规划问题的求解器已经开发出来。为了进一步改进和应用这些求解器,明确它们对不同类型问题的性能差异非常重要。在本研究中,对四种二次无约束二元优化问题求解器的性能进行了基准测试,即 D-Wave 混合求解器服务 (HSS)、东芝模拟分叉机 (SBM)、富士通数字退火器 (DA) 和个人计算机上的模拟退火。用于基准测试的问题是 MQLib 中的真实问题实例、随机不全相等 3-SAT (NAE 3-SAT) 的 SAT-UNSAT 相变点实例以及 Ising 自旋玻璃 Sherrington-Kirkpatrick (SK) 模型。对于 MQLib 实例,HSS 性能排名第一;对于 NAE 3-SAT,DA 性能排名第一;对于 SK 模型,SBM 性能排名第一。这些结果可能有助于理解这些求解器的优点和缺点。
变分量子算法在 NISQ 时代取得了成功,因为它们采用了量子-经典混合方法,可以缓解量子计算机中的噪声问题。在我们的研究中,我们在变分量子线性求解器中引入了动态假设,用于线性代数方程组。在这个改进的算法中,硬件高效假设电路的层数不断演变,从少量开始逐渐增加,直到达到解的收敛。我们展示了该算法与标准静态假设相比的优势,即在有和没有量子噪声的情况下,以及在系统矩阵的量子比特数或条件数增加的情况下,使用更少的量子资源和平均较小的量子深度。迭代次数和层数可以通过切换参数改变。该算法在使用量子资源方面的性能由新定义的指标量化。
用于解决量子线性系统 (QLS) 问题的量子算法是近年来研究最多的量子算法之一,其潜在应用包括解决计算上难以解决的微分方程和提高机器学习的速度。决定 QLS 求解器效率的一个基本参数是 κ,即系数矩阵 A 的条件数,因为自从 QLS 问题诞生以来,我们就知道,在最坏情况下,运行时间至少与 κ 呈线性关系 [1]。然而,对于正定矩阵的情况,经典算法可以求解线性系统,运行时间扩展为 √κ,与不确定的情况相比,这是一个二次改进。因此,很自然地会问 QLS 求解器是否可以获得类似的改进。在本文中,我们给出了否定的答案,表明当 A 为正定时,求解 QLS 也需要与 κ 呈线性关系的运行时间。然后,我们确定了可以规避此下限的正定 QLS 的广泛类别,并提出了两种新的量子算法,其特点是 κ 的二次加速:第一种基于有效实现 A − 1 的矩阵块编码,第二种构建形式为 A = LL † 的分解来预处理系统。这些方法适用范围广泛,并且都允许有效地解决 BQP 完全问题。
[1] Arute, F.、Arya, K.、Babbush, R. 等人。使用可编程超导处理器实现量子霸权。《自然》574,505–510(2019 年)。https://doi.org/10.1038/s41586-019-1666-5A。[2] Harrow, A. Hassidim 和 S. Lloyd,“线性方程组的量子算法”,《物理评论快报》103,150502(2009 年)。[3] Yudong Cao 等人,“用于求解线性方程组的量子电路设计”,《分子物理学》110.15-16(2012 年),第 1675–1680 页。arXiv:arXiv:1110.2232v2。[4] Solenov, Dmitry 等人。 “量子计算和机器学习在推进临床研究和改变医学实践方面的潜力。”密苏里医学第 115,5 卷 (2018):463-467。[5] C. Outeiral、M. Strahm、J. Shi、GM Morris、SC Benjamin 和 CM Deane,“量子计算在计算分子生物学中的前景,”WIREs Comput. Mol. Sci.,2020 年 5 月。[6] 王胜斌、王志敏、李文东、范立新、魏志强和顾永健,“量子快速泊松求解器:算法和完整模块化电路设计,”量子信息处理第 19 卷,文章编号:170 (2020)。 [7] H. Abraham 等人,“Qiskit:量子计算的开源框架”,2019 年。 [8] https://quantum-computing.ibm.com/ [9] Sentaurus TM 设备用户指南,Synopsys Inc.,美国加利福尼亚州山景城,2020 年。 [10] https://qiskit.org/textbook/ch-applications/hhl_tutorial.html [11] https://qiskit.org/documentation/stubs/qiskit.quantum_info.state_fidelity