图1:来自Operando XCT的实验设计和选定图像。(a)操作XCT细胞设计,成像和图像重建过程的示意图。(b)在0.5 mA CM -2电流密度,10 MPa堆栈压力和25°C下,在Operando XCT实验中循环的硅半细胞的电静态电压谱图。XCT图像是在第一次锂化之前和之后收集的,然后在划界和重新构度期间每15分钟收集一次。(c)从XCT数据中重建单元堆的3D渲染,突出显示了不同的2D切片。(d)垂直横截面图像显示了(i)原始的硅/LPSC界面,(ii)锂化,(iii)界定,(iii)截然不见,(iv)重新列为较高的状态,false-Color叠加层,突出显示了(I)中的硅和LPSC。(E-G)平面图像来自(e)锂化,(f)删除和(g)重新列为的硅电极中点的平面图像。
1 Li 2 C 3 O 5 430 CO 2 , C [15] 2 Li 2 C 2 O 4 545 CO 2 , C [15] 3 LiN 3 567 N 2 [15] 4 Cu/Li 2 O (1/1) 574 CuO [4] 5 Ni/Li 2 O (1/1) 605 NiO [4] 6 LiS 2 /Co 711 CoS 2 [27] 7 Fe/Li 2 O (3/4) 747 Fe 3 O 4 [4] 8 Fe/Li 2 O (2/3) 799 Fe 2 O 3 [4] 9 Li 2 S 1166 S [28] 10 Li 3 N 1761 N 2 [14]
锂硫电池 (LSB) 是后 LIBs 技术最有前途的候选者之一。[10–12] 在 LSB 中,通过硫和锂之间的多电子反应可实现 1675 mAh g −1 的理论容量。放电过程中会出现两个不同的电压平台。在较高的电压平台(约 2.3 V)下,S 的最稳定的同素异形体 S 8 的环状结构被破坏,形成长链多硫化锂;一开始是 Li 2 S 8 ,然后进一步还原为 Li 2 S 6 和 Li 2 S 4 。在较低的电压平台(约 2.1 V),长链多硫化锂进一步还原为 Li 2 S 2 和 Li 2 S。[13,14] 除了理论容量高之外,地球上 S 的储量丰富、价格低廉以及环境友好等特性使得 LSB 比 LIB 更便宜。然而,LSB 的工业化进程中仍存在一些障碍。[15,16] 首先,S 和放电产物 Li 2 S 本质上都是绝缘的(≈ 5 × 10 − 30 S cm − 1)。电极材料的低电导率会影响电池的电化学性能,尤其是在高电流密度下。其次,充放电过程中体积变化大会导致安全性和稳定性问题。由于 S 和 Li 2 S 的密度差异,当 S 转移到 Li 2 S 时,体积变化将高达 75%。最后,臭名昭著的穿梭效应会进一步导致性能下降。充放电过程中形成的多硫化锂可溶于电解液。这些中间体在正极和负极之间穿梭,并通过公式(1)和(2)所示的化学反应或电化学反应与电极材料发生反应,导致锂负极的消耗和“死”硫的形成,最终导致库仑效率和稳定性降低。
fuine量子现象与某种干扰模式相连,或者与不同的可观察物的不相容性有关。在量子相干的框架内尚未研究[2,17,27,43,63,63,67,76,78,78,86,93,102],简单地说,它是一种评估具有系统状态的抗抗强度的方法[17]。量子相干性也可以在资源理论的术语中进行描述[11、20、90、91]。由于资源理论服务于热力学基础[26],因此在Quan-Tum热力学的背景下,也已对量子相干性和实现的作用[8,10,53,54,85,105]进行了彻底研究[76]。在能够进行工作的量子设备中,量子电池具有特殊的位置。量子电池是基本的重要性,是一项激烈研究的领域[1、3-5、7、11、37、71、74、79、90、95],在Thermodody-Namics [6、12-14、31、33、41、61、68]中。我们通过Hamiltonian H 0对量子电池进行建模,该量子电池在时间上产生了能量的概念,并且随时间演化的量子状态ρt将ET(ρ)=ρt播放。在这里,图e t是一个不需要统一的通用量子通道,因为我们还考虑了开放量子系统的可能性[34,49,90]。提取的或存储的工作导致与初始状态不同的方式填充H 0的水平。先前的工作表明,量子相干性在从量子系统中提取工作中的重要性。同时,[75]显示了量子相干的行为如何构成fur-在[66]中,作者介绍了可以通过热过程提取的汉密尔顿特征性的相干性。
摘要:基于硅(SI)的阳极由于其高理论能力(〜3600 mAh/g)而对下一代锂(Li) - 离子电池都有希望。然而,它们在第一个周期中从初始固体电解质相(SEI)形成中遭受了大量的容量损失。在这里,我们提出了一种原位预定方法,将Li金属网格直接集成到细胞组件中。一系列LI网格被设计为预先构想试剂,这些试剂适用于电池制造中的SI阳极,并自发地添加了电解质。li网格的各种孔隙率构成预定的量相当于控制预定程度。此外,图案的网格设计增强了预定的均匀性。具有优化的预定量,基于SI的原位预定型完整细胞显示150个周期的容量> 30%的能力提高。这项工作提出了一种提高电池性能的便捷预定方法。关键字:锂离子电池,预定,硅阳极
抽象的O3型层状氧化物阴极(例如NANI 0.5 MN 0.5 O 2)由于其高理论特异性能力而引起了很大的关注,同时使用丰富的低成本钠作为互化物种。与锂类似物(Linio 2)不同,Nanio 2(NNO)表现出较差的电化学性能,这是由于结构不稳定性和下库仑效率而产生的。为增强其用于实际应用的可环性,NNO通过钛取代进行了修改,以产生O3型Nani 0.9 Ti 0.1 O 2(NNTO),该nno通过固态反应首次成功合成。使用多种表征技术详细研究了其出色性能背后的机制。nnto的特定排放能力约为190 mAh g -1,并且在循环中有多个相变的情况下,在2.0-4.2 V的潜在窗口中,即使在循环中存在多个相变。这种行为可以归因于取代基,这有助于维持NA缺陷相位的较大的SLAB距离,并通过降低镍的平均氧化状态来减轻Jahn-Teller活性。然而,高电位下的体积崩溃和不可逆的晶格氧损失仍然不利于NNTO。尽管如此,可以通过涂层和掺杂策略进一步提高性能。这不仅将NNTO定位为有前途的下一代阴极材料,而且还可以成为高能密度Na-ion电池领域的未来研究方向的灵感。
能量套利和负载以下的结果显示为能量套利。在一项研究中,从桑迪亚国家实验室(Sandia National Laboratory)考虑两者,这两种结果均分别显示和标记。备份功率在任何报告中均未重视。
全固态电池被认为是锂离子电池最有前途的竞争对手之一。固体电解质的两个广为人知的性能指标是离子电导率和稳定性。本文发现,通过硫化物基固体电解质中氯取代的协同效应,可以改善这两者。具体来说,通过增加对机械收缩引起的电压稳定性增强的敏感性,氯取代的硫化物固体电解质可以更好地抑制由本体分解和电极界面反应引起的不稳定性。因此,一些富氯锂银锑矿的稳定窗口可以系统地高于一些其他缺氯或无氯电解质,尤其是在实施机械收缩电池组装和测试条件下。因此,使用这些富含氯的锂银锗矿,无需额外涂层,就可展示 4 V 至 5 V 级正极与锂金属负极配对的固态电池系统。此外,由于氯组分会调节低电压下锂银锗矿的稳定性和不稳定性,因此我们可以设计具有不同锂金属稳定性层次的多层配置,以展示固态电池在相对高电流密度下的稳定循环。研究发现,电解质中适中的氯组分最能抑制作为中心电解质层的锂枝晶渗透,除了两个众所周知的稳定性和离子电导率指标外,还强调了略微增加的“不稳定性”是这里相关的隐藏性能指标。了解硫化物电解质中的氯取代效应为全固态电池提供了重要的设计原则。