密西西比州石油和天然气自然资源的生产和利用;通过禁止本文定义的浪费,保护公共和私人利益免受石油和天然气生产和利用过程中浪费的危害;维护、保护和执行共同石油和天然气来源或池中所有者的平等和相关权利,以使共同池或石油和天然气供应源中的每个此类所有者都可以从中获得其公平和合理的生产份额;并在切实可行的范围内,在禁止浪费的前提下,通过逐步钻探所有生产石油和天然气池或此后可能投入生产的所有池中的其他井,在该池完全确定之前,在该池中逐步钻探以充分开发该池。
氧化还原电池(RFB)是一种适合能源密集型电网存储的新兴电化学技术,但需要进一步降低成本来进行广泛部署。通过改进组成部分的设计和工程来克服细胞性能限制,代表了降低系统成本的有希望的途径。特定相关性但在研究中有限的是多孔碳电极,其表面组成和微观结构会影响细胞行为的多个方面。在这里,我们系统地研究了基于相同碳纤维的编织碳布电极,但分为不同厚度的不同编织模式(普通的,8个小缎,2×2篮),以识别结构 - 功能关系和可推广的描述符。我们首先使用一套分析方法来评估电极的物理特性,以量化结构特征,可访问的表面积和渗透率。然后,我们研究诊断流细胞配置中的电化学性能,通过极化和阻抗分析来阐明电阻损失,并通过限制电流测量值估算传质系数。最后,我们结合了这些发现,以在相关的尺寸和无量纲数量之间发展幂定律关系,并计算广泛的传质系数。这些研究揭示了电极的物理形态与其电化学和氢气性能之间的细微关系 - 表明普通的编织模式提供了这些属性的最佳组合。[doi:10.1115/1.4046661]更普遍地,本研究提供了物理数据和实验见解,这些见解可支持使用编织材料平台开发专用电极。
硫代磷酸盐基固态电池(SSB),具有高尼克三元阴极材料(例如Lini 0.83 CO 0.83 CO 0.11 MN 0.06 O 2(NCM))代表了有希望的下一代储能技术,原因是他们的预期高特定排放能力和改善的安全性。然而,通过相间通过相间的接触损失和细胞循环过程中的裂纹形成引起的快速衰减是一个显着的问题,阻碍了稳定的SSB循环和高能密度应用。在这项工作中,通过喷雾干燥过程获得了聚(4-乙烯基苯基苯基)三甲基铵双Bis(Tri-furomethanesulfonylimide)(NCM上的三甲基甲硫化液)(pvbta-tfsi))。NCM上仅2-4 nm厚度的极薄阳离子聚合物涂层有助于稳定NCM和LI 6 PS 5 Cl固体电解质(SE)之间的界面。电化学测试证实了长期循环性能和主动质量利用的显着改善。另外,聚合物涂层有效地抑制了NCM/SE界面的降解,尤其是氧化物种的形成,并降低了颗粒裂纹的程度。总体而言,这些结果突出了一种新的方法,可以使用SSB的NCM上的阳离子聚合物涂层来减轻SSB降解。
实心电解质目前是电池研究的重点,被认为是锂电池中常规,高度可易燃液体电解质的更安全替代品。在所谓的固态电池中,这些无机固体在正极和负电极之间运输锂离子。与新存储材料结合使用,因此它们是具有高能量密度的安全电池的关键。毕竟,液体电解质导致锂硫电池中不良的侧面反应,迄今为止,锂硫电池的侧面反应导致了较短的细胞寿命。因此,固体电解质的使用代表了一种有希望的溶液方法。当前的研究结果令人鼓舞:LI-S固态电池的基本可行性已经在实验室范围内证明。但是,有关应用程序相关的原型单元的数据太少,因此无法评估该技术。AIM:面向应用程序的证明
辣椒泥是一种高度有价值的园艺作物,由于其高水量而面临与快速恶化有关的挑战。已提出将辣椒加工成泥,以扩大其保质期。但是,由于其水含量助长了微生物的生长,在环境环境中留下时,新鲜的辣椒果会迅速腐烂。为了解决这个问题,已经研究了将鱼池用作替代且环保的存储方法。与常规的冰箱储存相比,这项研究探讨了储存在鱼池中的辣椒泥的代谢组变化和保存机制。使用气相色谱系统分离后,通过质谱分析确定辣椒泥中的代谢产物。可以通过化学计量技术全面测量代谢物,可以理解储存过程中果泥的化学成分和果泥的变化。即使众所周知,储存在冰箱中的地面辣椒的感觉参数与储存在池中持续五个星期的地面辣椒的感觉参数相对较差,但分子众所周知,这两个样品中代谢物的分布与第四周开始不同。从这项研究中获得的洞察力可以导致量身定制的存储条件,从而最大程度地发挥保存潜力并确保保留的辣椒泥的质量和安全性。这项研究强调了鱼池的潜力,可以延长辣椒泥的保质期,同时最大程度地减少废物和资源使用。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
基线。造林和再造林清洁开发机制(A/R CDM)项目活动的基线场景是在没有A/R CDM项目活动的情况下合理地代表项目边界内碳池中碳库存变化的总和。基线应涵盖碳池的所有显着变化和/或在CO 2等效单位中测量的温室气体(GHG)的排放,这些源是由于拟议的A/R CDM项目活动的实施而增加的来源,同时避免了双重计数。基线方法将采用以下方法:(a)项目边界内碳池中碳库中的现有或历史性的变化; (b)考虑到投资的障碍,该项目边界内碳池中碳库的变化来自代表经济上有吸引力的行动; (c)碳库存的变化。
摘要:越来越多的研究集中在有机流动电池(OFB)上,作为钒流电池(VFB)的可能替代品,具有蒽醌衍生物,例如蒽醌-2,7-二硫酸(2,7-AQDS)。VFB已被认为是一种有前途的储能技术。然而,钒矿物质和危险供应链的波动妨碍了它们的实施,而可以通过可再生原材料制备OFBS。流量电池的关键组成部分是电极材料,它可以确定功率密度和能量效率。,与VFB相比,针对OFBS量身定制的电极的研究很少。因此,在这项工作中,我们提出了对2,7-AQDS氧化还原夫妇的氧化石墨烯(RGO)和聚乙二醇降低的商业碳毡的修饰,并初步评估其对2,7-AQDS/非铁素流量电池的影响。的结果与VFB的结果进行比较,以评估修改的益处是否可以转移到OFBS。通过RGO的存在引入表面氧的碳毡的修饰增强了其亲水性和表面积,有利于对VFB和OFB反应的催化活性。鉴于改良电极的行为改善,结果是有希望的。的相似之处。关键字:2,7-AQD,电催化,储能,六酰甲型甲酸,修饰的毛毡,有机流量电池,氧化还原流量电池
摘要。随着科学技术的发展,传统化石燃料的大量消费不仅带来了严重的环境污染,而且会引起能源危机。作为当今世界上必不可少的新能源,锂电池具有许多优势,其他类型的电池没有具有高能量密度,长寿,长寿,低自我释放速度优势,绿色和环境保护等,以及在各种领域中广泛使用的,例如自动,自动,医疗,航空航天等。然而,诸如传统锂电池中石墨材料的低特异性容量和高侧反应等缺点限制了锂电池的应用。石墨烯是由单层厚度组成的二维材料,具有巨大的表面积,高强度和硬度,良好的电导率和导热性,柔韧性和透明度的优势,并具有在锂电池中应用的巨大潜力。在本文中,对于石墨烯作为锂电池的阳极材料,分别讨论了其对锂电池性能的影响,包括循环性能,充电/放电速率和能量密度。此外,本文还总结了在锂电池中应用石墨烯阳极材料的最新进展。
li-cycle北美枢纽(LI-Cycle)正在提议“向前”,这是一种湿度铝制造设施(通常称为枢纽),该设施从使用两步的流程中提取和回收临界金属和其他临界金属和其他产品。不受联邦财政支持的初始过程,涉及从支出的锂离子电池中恢复关键材料,并在Li-Cycle的场外发动机设施中恢复了一个黑色质量,然后将黑色质量集中到氢化甲状管经痛制造制造枢纽设施(项目或集中的枢纽)中,将其加工到关键电池中,并将其加工到关键电池中(LITH),并将其加工到关键电池中(LITH)。是联邦财政支持的主题的枢纽设施将位于希腊镇(纽约州罗切斯特市的郊区)的前柯达公园(现在称为Eastman Business Park-South(EBP-S))。