Logistics 4 Excavation 6 Crane 8 Materials 10 Hire 12 Aqua Technics 14 Built Stronger to Last Longer 16 Graphene Nano-Tech 17 Pool ColourGuard 18 Resort Series 20 Contemporary Series 22 Piazza Series 24 Harmony Series 26 Bellagio Series 28 Bahama Series 30 Lap Pool Series 32 Villa Series 34 Alpine Series 36 Spa Series 37 Round Plunge Pools 38 Aqua Ledge 41 Quick Reference Guide 43
设计,优化和制造。数值技术,例如有限元分析,验收动力学,第一原理计算和多尺度建模,可以有效地预测机构属性并优化设计。与此同时,人工智能和大数据分析可以通过机器学习发现新材料和反向设计。智能手段与自适应控制系统相结合,实现了生产过程的自动化和实时优化,从而提高了制造效率和精度。尽管数据和计算成本不足,但随着技术的进步,材料科学却朝着更高的精度和自动化方向发展。
脑肿瘤死亡率高,治疗选择有限,是全球重大健康问题。这些肿瘤是由脑内细胞异常生长引起的,大小和形状各异,因此,对于医疗专业人员来说,通过磁共振成像 (MRI) 扫描手动检测它们是一项主观且具有挑战性的任务,因此需要自动化解决方案。本研究探讨了深度学习(特别是 DenseNet 架构)自动化脑肿瘤分类的潜力,旨在提高临床应用的准确性和通用性。我们利用了 Figshare 脑肿瘤数据集,该数据集包含 233 名患者的 3,064 张 T1 加权增强 MRI 图像,这些患者患有三种常见肿瘤类型:脑膜瘤、神经胶质瘤和垂体瘤。使用来自 ImageNet 的迁移学习评估了四种预训练的深度学习模型——ResNet、EfficientNet、MobileNet 和 DenseNet。DenseNet 实现了最高的测试集准确率 96%,优于 ResNet(91%)、EfficientNet(91%)和 MobileNet(93%)。因此,我们专注于提高 DenseNet 的性能,同时将其视为基础模型。为了增强基础 DenseNet 模型的通用性,我们实施了一种微调方法,该方法采用了正则化技术,包括数据增强、dropout、批量归一化和全局平均池化,并结合了超参数优化。这种增强的 DenseNet 模型实现了 97.1% 的准确率。我们的研究结果证明了 DenseNet 结合迁移学习和微调对脑肿瘤分类的有效性,凸显了其在临床环境中提高诊断准确性和可靠性的潜力。
企划管理部 IoT应用推进部 社会基础设施解决方案本部 金融及企业解决方案本部 网络系统本部 防卫系统本部 IoT平台本部 系统中心 基础技术中心 信息通信本庄工厂 信息通信沼津工厂
3月23日,由Qiyuan Green Power,Shanghai Boonray Intellighent Technology Co.,Ltd。,Top Gear等共同开发的无人电池交换矿业卡车,并配备了由上海Boonray Intellray Intellighent Technology Co.,Ltd.,Ltd.,Ltd。目前,它已在South Cement的矿山中进行了方案终端申请测试。根据现场测试,“电牛”可以将二氧化碳的排放量减少至少260吨,从而节省至少20万卢比的劳动力成本。