摘要:如果未准确检测到,脑肿瘤会导致严重的健康并发症,并导致死亡。因此,对脑肿瘤的早期检测和脑肿瘤类型的准确分类在诊断中起主要作用。最近,使用大脑磁共振成像(MRI)图像的基于深度卷积神经网络(DCNN)方法在检测和分类任务方面表现出色。但是,DCNN体系结构的准确性取决于数据样本的培训,因为它需要更精确的数据才能获得更好的输出。因此,我们提出了一个基于转移学习的DCNN框架,以对脑膜瘤肿瘤,神经胶质瘤肿瘤和垂体肿瘤进行分类。我们使用预先训练的DCNN体系结构VGGNET,该体系结构先前在巨大的数据集上进行了训练,并用于将其学习参数传输到目标数据集。此外,我们采用了转移学习方面,例如卷积网络,并冻结卷积网络的层,以提高性能。此外,这种提出的方法在输出处使用全球平均池(GAP)层,以避免过度解决问题和消失的梯度问题。评估了所提出的体系结构并将其与基于深度学习的脑肿瘤分类方法进行比较。我们提出的方法可产生98.93%的测试准确性,并优于当代学习方法。
可以通过自愿许可(VL)部分解决由有限的直接营销和知识产权保护的有限商业利益组合所形成的障碍。这是一种机制,专利持有人可以在专利持有人毫无兴趣的市场上向另一家公司授予许可证,以开发和销售自己的自身版本。许可可以是双边的(即直接在发起人和通用制造商之间)或多边(即通过MPP等第三方)。可以通过专利池获得许可,任何想要使用,生产或开发药品的公司都可以从中寻求许可以换取特许权使用费。1汇总许可有多个好处。主要的是,通用制造商只需要在同一治疗方案中生产多种药物时就需要与他们打交道。专利池本质上是所有各方的“一站式商店”,这有助于涉及获得许可,降低交易成本并增加对制造重要药物所需的IP的访问权限所涉及的法律和官僚流程。2,3
导入 – 使用此按钮或说明工作表上的“导入”链接导入数据。隐藏列 – 用户可以通过选择要隐藏的列中的任何单元格,然后单击此按钮来隐藏列。单击列中的任何单元格即可选择单个列。按住键,同时单击列中的任意单元格,或通过单击并拖动列范围内的任意一行单元格来选择列范围。前两列(A 和 B)不能用这种方法隐藏。取消隐藏列——只要您没有移动光标,单击此按钮将取消隐藏您刚刚隐藏的列。您也可以通过选择隐藏列或列范围两侧的列中的单元格,然后单击此按钮来取消隐藏特定的列或列范围。取消隐藏所有列——此按钮可恢复查看所有隐藏的列。隐藏行——用户可以通过选择要隐藏的一行或多行中的任意单元格,然后单击此按钮来隐藏行。通过单击行中的任意单元格可选择一行。通过按住键的同时单击行中的任意单元格。通过单击并上下拖动任意一列单元格来选择一行范围。取消隐藏行 — 只要您没有移动光标,单击此按钮将取消隐藏刚刚隐藏的行。您也可以通过突出显示隐藏行或行范围两侧的行中的单元格,然后单击此按钮来取消隐藏特定的行或行范围。取消隐藏所有行 — 此按钮恢复以查看所有隐藏的行。清除所有过滤器 — 此按钮清除您设置的所有过滤器,包括当前工作表以外的工作表上的过滤器。您无法将数据导入设置了过滤器的工作簿。当您单击“说明”工作表上的“导入”链接时,所有过滤器都将被自动清除。排序 — 允许用户按最多三列的任意组合对工作表中的行进行排序。排序可以是升序或降序。使用标准 Excel 排序功能指定排序。主菜单 – 这将带您进入“说明”工作表,其中包含指向工作表的快速链接。通配符统计 – 出现一个窗口,允许您选择要在统计报告中使用的通配符列。通配符值从具有深绿色背景的数据工作表列标题单元格中提取。注意:通配符标题可以更改为有意义的标题。自定义 – 您可以使用此按钮重新排序和重命名支付池。您还可以将通配符值移动到所需的顺序。输出图表 – 调出一个用户表单,允许将任何/所有图表输出为 Excel 或 PowerPoint 格式。图表仅导出为图像。仅在
引言细胞外囊泡(EV)是膜和纳米结构,其含有异质的分子货物,该货物由任何介入细胞间通信的细胞类型分泌[1]。EV的这种相关作用引发了人们对其临床和生物技术应用的研究的兴趣[2]。在这些应用中,经过广泛研究的领域之一是它们在再生医学中的治疗潜力。自1967年发现以“血小板粉尘”的发现,血小板衍生的细胞外囊泡(PEV)在该领域显示出很高的潜力作为治疗资产。已建议它们作为血小板浓缩物活性(PC)的主要效应子[3,4]。因此,在组织再生中对PEV的研究一直是我们组的主要目标之一。PEV已被证明具有出色的临床转换性,可以提高成骨潜力[5],牙龈和皮肤伤口伤口愈合应用的再生作用[6-9]和骨关节炎[10]。此外,还探索了它与不同临床应用的生物材料的组合[11,12]。PEV的分子货物(例如蛋白质和miRNA)被认为是其再生潜力的效应因素[13,14]。eV,例如人脐带脊柱间充质干细胞(MSC),诱导多能干细胞(IPSC)和人脐静脉内皮细胞(HUVEC),也为此目的探索了[15]。在比较体外和体内研究中,我们表明,与MSC衍生的EV相比,PEV具有更大的再生潜力和更大的临床转换性[10]。
投资策略的目的是提供对股权和股票相关的多元化投资组合的访问,这些投资组合在发达市场中建立或以其他方式积极活跃的上市房地产实体,并提供类似于基准的回报。池试图跟踪基于ESG标准和可持续性框架的选择和重量实体的索引。该指数排除了基于与产品相关和UNGC排除的排除列表中的所有组成部分,其中包括由APG归类为房地产ESG领导者的公司。该指数利用优化技术包括具有合理的管理,声誉稳固,无害和CRREM一致性以及受控因素以及跟踪错误风险与市场上限加权父母指数的公司。母公司指数是ISTOXX开发的房地产指数。基于良好的治理实践(GGP)测试,该金融产品中的投资公司(预)在与声音管理结构,员工关系,税收合规性和员工报酬有关的争议中进行了筛查。游泳池不投资不通过GGP测试的公司,即标记GGP争议的地方。
1 黄金海岸 1 1 0 0 0 2 布里斯班 1 1 0 0 0 3 阳光海岸 1 1 0 0 0 4 宽湾 1 1 1 0 0 5 罗克汉普顿 0 1 1 0 0 6 马尔堡 0 1 1 0 0 7 麦凯 0 1 1 1 1 8 普罗瑟派恩及近海群岛 0 0 1 1 1 9 汤斯维尔 0 0 1 1 1 10 英厄姆 0 1 1 1 0 11 凯恩斯 0 1 1 1 0 12 约克角 1 0 1 1 0 13 费尔角 0 0 1 0 0 14 海湾 0 1 1 0 0 15 昆士兰州内陆 1 0 0 0 0 16 北领地北部 1 1 0 0 0 17 达尔文 0 0 1 0 0 18 其余地区 北领地 0 0 0 0 0 19 库努纳拉-布鲁姆 1 0 1 0 1 20 皮尔巴拉 0 0 0 0 1 21 杰拉尔顿 中央海岸 1 1 1 0 0 22 珀斯 1 1 0 0 0 23 奥尔巴尼-班伯里 1 1 0 0 0 24 其余地区 西澳大利亚 1 0 0 0 0 47 北坡 0 0 0 0 0 48 中北海岸 1 0 0 0 0 49 远北海岸 1 1 0 0 0
预计到 2050 年,世界人口将达到 96 亿,在满足日益增长的优质蛋白质需求的同时为子孙后代保护自然资源,面临着巨大挑战。渔业可以通过提供动物蛋白、创造就业机会和促进经济增长,在应对这一挑战中发挥关键作用。生物絮凝技术 (BFT) 代表一种高度先进的水产养殖方法,其中营养物质在养殖系统中不断循环和再利用,从而最大限度地减少或消除了水交换的需要。BFT 是一种生态友好型方法,通过控制水中的碳和氮来利用原位微生物蛋白质生产。生物絮凝是指水中的悬浮生长物,由活的和死的颗粒有机物、浮游植物、细菌、原生动物和细菌的食草动物组成。它既是养殖生物的食物资源,也是一种水处理解决方案。该系统又称为活性悬浮池、异养池或绿汤池。生物絮凝池的科学建造是生物絮凝养鱼系统絮体和鱼的产量和生产力的重要决定因素。因此,在实施生物絮凝养鱼时,应特别注意生物絮凝池的科学建造。
摘要:随着电子产品的快速发展,热管理已成为最关键的问题之一。激烈的研究集中在用于增强传热的表面修饰上。在这项研究中,多层铜微壳(MCM)是为商业紧凑的电子冷却而开发的。沸腾的传热性能,包括临界热量(CHF),传热系数(HTC)和成核沸腾的发作(ONB)。研究了Micromesh层对沸腾性能的影响,并分析了起泡特性。在研究中,MCM-5显示了207.5 W/cm 2的最高临界热量(CHF),而HTC的HTC为16.5 w(cm 2·K),因为它具有丰富的微孔作为核位点,并且具有出色的毛细管焊接能力。此外,将MCM与文献中的其他表面结构进行了比较,并具有高竞争力和在商业应用中的高功率冷却的潜力。
细胞和基因疗法是一种精确药物,可为患者的DNA量身定制治疗。截至2024年9月,有39个批准的细胞和基因疗法。一旦成为新兴的科学,FDA预计每年从2025年开始批准10至20个细胞和基因疗法。是治疗疾病的细胞和基因疗法,例如过正常白细胞营养不良,血友病B和Duchenne肌营养不良。尽管这些新疗法有可能对患者的健康和生活质量产生深远影响,包括治愈疾病的能力,但成本和不可持续的药物管道是不可持续的。
摘要:以降水为导向的冷池在组织热带对流中起着重要作用。先前在辐射对流平衡(RCE)设置中对热带对流的研究发现,冷池倾向于相互碰撞并触发新的对流。目前尚不清楚为什么大多数冷池没有足够的空间就可以消散而没有碰撞。,我们将其解释为较小的平均冷池半径Req,而最大电势半径r最大。后者表示冷池的浮力所需的半径是通过表面加热来消除的。应用能量平衡约束会导致其比率R Max / R EQ的分析解决方案,该解决方案取决于Bowen比率,表面降水量 - 蒸发比和雨水沉积效率。该理论预测,在海洋热带对流方面,鲍恩比率远小于一个,r eq不能达到最大,而冷池必须经常碰撞。使用不同的降雨蒸发率,大型模拟支持了这一预测。在第二部分中,我们将能量平衡约束与对流生命周期模型相结合,以获得平均冷池半径Req的理论。