图 3.4.1-1:虚拟喷嘴配置 17 图 3.4.1-2:液压油理论排放速度 19 图 3.4.1-3:喷火热释放率 20 图 3.4.1-4:喷火火焰长度 21 图 3.4.1-5:喷火火焰发射功率 22 图 3.4.1:火焰与目标平面之间的关系 23 图 3.4.1-6:距喷射火焰 0.50 米处垂直平面的辐射热通量 24 图 3.4.1-7:距喷射火焰 0.75 米处垂直平面的辐射热通量 24 图 3.4.1-8:距喷射火焰 1.00 米处垂直平面的辐射热通量 25 图 3.4.1-9:距喷射火焰 2.00 米处垂直平面的辐射热通量m 距离喷射火焰 25 图 3.4.1-10: 距离喷射火焰 4.00 m 处垂直平面的辐射热通量 26 图 3.4.1-11: 距离喷射火焰 6.00 m 处垂直平面的辐射热通量 26 图 3.4.1-12: 距离喷射火焰 10.00 m 处垂直平面的辐射热通量 27 图 3.4.1-13: 目标热通量与距离 27 图 3.4.2-1: 预测热释放率与池直径 30 图 3.4.2-2: 池火每单位表面积质量燃烧率 31 图 3.4.2-3: 池火增长至峰值热释放率的时间 32 图 3.4.2-4: 池火火焰高度 33 图 3.4.2.1-1: 距离垂直平面 5.5 m 处的辐射热通量来自 JP-4 池火 35 图 3.4.2.1-2: 辐射热通量至垂直平面 5.75 米 来自 JP-4 池火 35 图 3.4.2.1-3: 辐射热通量至垂直平面 6.0 米 来自 JP-4 池火 36 图 3.4.2.1-4: 辐射热通量至垂直平面 8.0 米 来自 JP-4 池火 36 图 3.4.2.1-5: 辐射热通量至垂直平面 10.0 米 来自 JP-4 池火 37 图 3.4.2.1-6: 辐射热通量至垂直平面 15.0 米 来自 JP-4 池火 37 图 3.4.2.1-7: 辐射热通量至垂直平面 20.0 米 来自 JP-4 池火 38 图 4.1-1: 火灾热量释放速率 41 图 4.1-2:隔间气体层温度 42 图 4.1-3:层界面高度 42 图 4.1-4:目标辐射热通量 43 图 4.1-5:目标热通量与离火距离的关系 43 图 4.2.1-1:热释放速率随隔间尺寸变化 44 图 4.2.1-2:不同隔间尺寸的层温度 45 图 4.2.1-3:15x15 米垂直目标隔间的热通量 46 图 4.2.1-4:5x5 米垂直目标隔间的热通量 46 图 4.2.2-1:不同火势大小的对流热释放速率 47 图 4.2.2-2:不同火势大小的辐射热释放速率 47 图 4.2.2-3:稳态热释放速率与火灾直径 48 图 4.2.2-4:不同火灾大小的上层温度 48 图 4.2.2-5:不同火灾大小的下层温度 49 图 4.2.2-6:稳定状态层温度与火灾直径 49 图 4.2.2-7:2.5 米直径火灾的目标热通量 50 图 4.2.2-8:2.0 米直径火灾的目标通量 51 图 4.2.2-9:1.5 米直径火焰的目标通量 51
加利福尼亚大学,洛杉矶(UCLA),洛杉矶(美国)蒂莫西·F·克拉夫斯(Timothy F. Cloughesy)
【2023年度成果(论⽂・特许)】1。J. H. Park等人,高度耐用的石墨烯封装的基于铂的电催化剂,用于通过溶液等离子体过程合成的氧气还原反应,功率来源杂志,580(2023),233419,2。J. H. Park等人,高度耐用的碳壳的新溶液等离子体合成,用于聚合物电解质膜燃料电池的高度耐用碳壳基于铂基的阴极催化剂,碳,214(2023),118364,3。M. Huda等人,单壁碳纳米管支持PT电催化剂作为单个燃料电池的阴极催化剂,其耐用性高/关闭/关闭电势循环,ACS Applied Energy Materials,6(2023)12226-12226-12226-122236 4。H. N. Nam等人,第一原告对石墨烯和氮掺杂石墨烯涂层的铂电催化剂的氧还原反应机制的研究,物理化学化学物理学,26(2024)10711-10722 5。出愿番号:2024-025901
Logistics 4 Excavation 6 Crane 8 Materials 10 Hire 12 Aqua Technics 14 Built Stronger to Last Longer 16 Graphene Nano-Tech 17 Pool ColourGuard 18 Resort Series 20 Contemporary Series 22 Piazza Series 24 Harmony Series 26 Bellagio Series 28 Bahama Series 30 Lap Pool Series 32 Villa Series 34 Alpine Series 36 Spa Series 37 Round Plunge Pools 38 Aqua Ledge 41 Quick Reference Guide 43
目前的太空服就像充气气球,以正确的压力对身体产生推力。但是太空服很难移动,宇航员经常摔倒。因此,霍尔舒教授和他的团队研究了一种名为 BioSuit 的新型柔性太空服。宇航员按下按钮,电流就会通过 BioSuit,将太空服的智能材料调整到正确的压力。真聪明!
当今,发电厂工程师主要关注如何最大限度地提取燃料能量。这一目标涉及根据热力学第一定律和第二定律提高不同热力学要素和整个循环的效率。为实现这一目标,工程师们采用了各种旨在提高这些效率的技术。在目前的研究中,所使用的一种技术是用不同的工作流体替代水/蒸汽。通过改变工作流体,工程师们旨在优化发电厂的热力学性能。在本研究中,分析重点是氨水混合物与跨临界二氧化碳在热回收蒸汽发生器中的应用。研究结果表明,实现的最高功输出和第二定律效率分别为 1192 kJ/秒和 81.68%。当顶部循环压力设置为 50 bar,并且涡轮机入口温度分别为 500°C 和 300°C(氨水混合物和跨临界二氧化碳)时,可获得这些最佳值。此外,当顶循环压力设置为 50 bar、底循环压力设置为 160 bar 且涡轮机入口温度为 300°C 时,可观察到 43.57% 的最大第一定律效率。分析还表明,热源是造成大部分能量破坏的原因,在 500°C 的温度下,最多有 1970 kJ/秒的可用能量被破坏。为了实现热力学性能参数的最高值,建议在吸收器和冷凝器中保持低压。此外,分析表明,当冷凝器压力设置为 70 bar 时,发电成本达到峰值,达到 0.050 美元/千瓦时。
3.2建筑物的每个楼层应分为至少二十(20)个大约相等的测试区域的网格。每个关键区域应至少包含一个测试读数。一(1)个测试区域的故障应导致测试失败。如果两个测试区域未能进行测试,则将地板分为40个平等测试区域。失败不超过两个非贴态测试区域,不得导致测试失败。 如果系统未通过40个地区测试,则应更改系统以满足95%的覆盖范围要求。 必须通过100%的关键领域。 将选择位于网格区域中心的位置进行测试。 选择了该点,将不允许在网格区域内获得更好的位置。 现场强度测试工具将使用该机构通过机构通信系统或《消防法规官员批准的设备》校对的最新品牌和模型的便携式广播(在去年内)进行。失败不超过两个非贴态测试区域,不得导致测试失败。如果系统未通过40个地区测试,则应更改系统以满足95%的覆盖范围要求。必须通过100%的关键领域。将选择位于网格区域中心的位置进行测试。选择了该点,将不允许在网格区域内获得更好的位置。现场强度测试工具将使用该机构通过机构通信系统或《消防法规官员批准的设备》校对的最新品牌和模型的便携式广播(在去年内)进行。