我的孩子在哪里接触铅?儿童可以通过呼吸或食用来暴露于铅。儿童铅暴露的最常见来源来自1978年之前建造的房屋中的铅基油漆。旧的铅涂料可以擦掉,成为孩子可能会呼吸或进食的微小灰尘,或者将其放在嘴里的其他物体上时。有时油漆可能会以较大的芯片脱落,有些孩子可以将其放入嘴里。铅灰尘和芯片甚至可以进入较老的房屋和建筑物周围的土壤,或者曾经站立的旧建筑物。
“利用人工智能实现污水处理厂运营先进支持技术示范项目”与其他三方:广岛市、船桥市和NJS株式会社共同开展。广岛市和船桥市担心将污水设施运营技能传承给下一代。NJS株式会社是一家推动基于人工智能的新技术传播的咨询公司。四方为该项目组成了一个联合研究小组。该示范项目由国土交通省国土交通省国家土地和基础设施管理研究所(NILIM)委托,作为2021年污水高科技动态方法突破项目(“B-DASH项目”)的全面示范。关于示范项目,本文介绍了我们用于污水处理厂运营的人工智能技术概念和一些项目成果。
摘要:考虑到令人担忧的水资源短缺问题,必须采用更高效的废水处理技术。废水可以通过传统的生物过程处理,去除病原体、颗粒和可溶性有机化合物以及其他成分。然而,处理厂的二级废水可能仍然含有有毒元素或高浓度的无机营养物(主要是氮和磷),这使得光合微生物在水体中生长,导致水体富营养化。在这种情况下,在污水处理产生的二级废水中培养光合微生物可以去除这些废水中的营养物,降低水体富营养化的可能性。此外,在这种三级废水处理中产生的微藻生物质可以通过不同的方法收获,并有可能用于不同的应用,例如肥料和生物燃料。
结果,我们正在产生多种疾病预测系统,该系统一次预测多种疾病。在这里,我们正在考虑根据他们输入的症状使消费者立即获得精确疾病预测。因此,我们提出了一种利用简化来预测各种疾病的方法。我们将检查该系统中的糖尿病,心脏病和帕金森氏病分析。后来,可以增加更多的疾病。我们将使用机器学习算法,泡菜模块,简化来实施多重疾病预测系统。Python腌制库与算法SVM和逻辑回归一起使用。使用腌制库保存模型行为。一个名为Sparlit的开源框架用于创建在线应用程序,而无需任何先前的HTML,CSS或JavaScript专业知识。
电子商务是通过电子网络(主要是Internet)通过电子网络购买和销售商品和服务或资金或数据的传输。这些业务交易发生企业对企业,企业对消费者,消费者到消费者或消费者对企业。术语E-商业和E-业务通常可以互换使用。术语E-尾巴有时也用于参考在线零售周围的交易过程。电子商务借鉴了移动商务,电子基金传输,供应链管理,互联网营销,在线交易处理,电子数据互换,库存管理软件,数据收集系统电子商务的技术,该应用程序是使用各种应用程序进行的,例如电子邮件,传真在线目录和网络目录和购物车,电子数据交换,文件交换,文件交换协议和网络传输协议和网络服务。其中大部分是从事企业的,一些公司试图将电子邮件和传真使用给消费者和其他业务前景,并将电子新闻通讯发送给订阅者。电子商务是印度不断发展的行业。就像1990年代印度的IT行业的发展一样,2010年代将因电子商务行业的增长而被人们铭记。在目前的状态下,电子商务对GDP的贡献约为0.2%,预计到2030年将增长15次,约2.5%。影响是如此巨大,以至于目前的取消货币化浪潮是否不存在,如果不存在电子商务。电子商务在很大程度上有助于吸收其震惊,并从中获得了最大收益。到2030年,电子商务对GDP的贡献预计将达到约3000亿美元,目前的州约为200亿美元。
摘要:本文提出了一种线性参数变化 (LPV) 框架中的经济模型预测控制 (EMPC) 策略,用于控制污水处理厂 (WWTP) 曝气反应器中的溶解氧浓度。复杂非线性工厂的简化模型以准线性参数变化 (qLPV) 形式表示,以减少计算负担,实现实时操作。为了便于制定作为系统状态函数的时变参数以及用于反馈控制目的,提出了一种使用 qLPV WWTP 模型的移动范围估计器 (MHE)。基于 ASM1 模拟基准对控制策略进行了研究和评估,以进行性能评估。将 EMPC 策略应用于西班牙赫罗纳 WWTP 曝气系统的控制,所获得的结果证明了其有效性。
AAC 年平均浓度 BOD5 五日生化需氧量 CBOD5 五日碳质生化需氧量 CEU 继续教育单位 CFU 菌落形成单位 DAF 溶气浮选 大肠杆菌 大肠杆菌 ECA 环保合规批准 Fe 铁 HTP 亨伯处理厂 HRT 水力停留时间 kg 千克 kWh 千瓦时 MAC 月平均浓度 MGMD 月几何平均浓度 MWh 兆瓦时 m3 立方米 m3 /天 立方米/天 mg/L 毫克/升 mL 毫升 ML 百万升 MECP 环境、保护及公园部 Q 流量 RAS 回流活性污泥 SBS 亚硫酸氢钠 SBS (P) 亚硫酸氢钠存在量 scm 标准立方米 SS 悬浮固体 TCR 总量余氯 TP 总磷 TS 总固体 TSS 总悬浮固体 TVS 总挥发性固体 TWAS 浓缩废弃活性污泥 μg/L 微克/升 WAS 废弃活性污泥 % w/v 溶液成分的百分比浓度,以重量/体积表示 % w/w 溶液成分的百分比浓度,以重量/重量表示
《水污染防治法》规定了污水处理厂排放水的排放标准,并对化学需氧量 (COD) 进行控制。濑户内地区和其他指定区域的污水处理厂还对总氮含量 (TN) 和总磷含量 (TP) 进行额外监管。为了满足标准,污水处理厂使用自动测量设备来监测这些控制和调节参数;但是,根据流入污水处理厂的污水质量和污水处理工艺条件,排放水质可能会恶化。要将这种恶化的水质恢复正常,需要维护人员的经验和专业知识,而且由于需要经过一定的时间,因此也需要维护人员的劳动。为了让维护人员能够提前发现水质恶化,日信电机株式会社开发了一种技术,可根据这些控制和调节参数的过去实际数据,使用人工智能 (AI) 预测未来的水质变化。该技术有助于防止水质恶化,同时减轻维护人员的负担。
(1)国土交通省网站:碳零排放社会贡献分科委员会第 1 次会议资料(2021 年 10 月 1 日) http://www1.mlit.go.jp/mizukokudo/sewerage/mizukokudo_sewerage_tk_000734.html(2022 年 1 月 21 日) (2)高濑伸明等:“利用卷积自动编码器进行污水处理设施的异常检测”,DIA2020 动态图像处理实用研讨会,第 276-282 页,2020 年 (3)木村优希等:“基于 AI 的污水处理厂运行决策技术的验证”,第 57 届下水道研究会议论文集,第 889 页,2020 年
2007 年《水务法》(经修订)要求环境保护署 (EPA) 制定针对家庭污水处理系统 (DWWTS)(也称为化粪池系统)的国家检查计划。爱尔兰有近 50 万个 DWWTS。该计划的目的是保护人类健康和水质免受 DWWTS 带来的风险。本文件是第四个计划,涵盖 2022 年至 2026 年期间。它列出了背景、最低检查次数、基于风险的检查分配、执行建议通知的要求以及促进更广泛合规的参与要求。国家检查计划由水务当局实施,他们在 EPA 的监督和支持下开展检查和参与活动。