过去几年,印度在卫生方面的努力已成为焦点,这主要归功于政府旗舰卫生计划“清洁印度” (Swachh Bharat) 的努力。该计划通过在全国城乡地区建立家庭厕所,在加速安全卫生设施的普及方面取得了巨大成功,并帮助印度实现了防止露天排便的目标。政府决心通过该领域的下一组目标进一步改善公共卫生成果:ODF+、ODF++ 和 Water+ 认证。由于许多印度家庭依赖现场卫生系统,因为它价格低廉;粪便废物的处置和处理与粪便废物的控制同样重要。话虽如此,现场卫生系统只有在整个服务链得到充分管理的情况下才可行,而这正是粪便污泥和污水管理 (FSSM) 的重要性所在。
4非癌症人类健康效应的风险阈值是等于,当暴露等于参考剂量(RFD)时。癌症效应的阈值是终身过剩的癌症风险为1x10-6,即,当寿命平均每日剂量导致高于背景癌症发病率的每百万次癌症病例时。5 Though EPA Method 1633 recommends that laboratories develop their own limit of quantification (LOQ) and method detection limit (MDL) when measuring PFAS in sewage sludge, most laboratories running this method achieve LOQs and MDLs of 1 ppb or lower for PFOA and PFOS ( se e https://www.epa.gov/cwa-方法/CWA分析方法和聚氟烷基 - 溶剂 - 替代pfas)。
摘要 — 选择架构描述了向人们呈现选择的设计。助推是一种旨在使“好”结果变得容易的方面,例如使用密码计量器来鼓励使用强密码。相反,污泥是一种增加交易成本的摩擦,通常被视为对用户的负面影响。扭转这一概念,我们建议通过进攻性地消耗攻击者的时间和其他资源来应用污泥以获得积极的网络安全结果。到目前为止,大多数网络防御都设计得非常强大和有效,并尽快禁止或消灭攻击者。我们的补充方法是部署防御措施,以最大限度地消耗攻击者的时间和其他资源,同时尽可能少地对受害者造成伤害。这与零信任和假设违规的类似思维模式一致。污泥策略通过在攻击之前、期间和之后使用欺骗和真实的设计特征为攻击者战略性地部署摩擦来引入成本高昂的网络防御。我们介绍了有效污泥的特征,并展示了从轻污泥到重污泥的连续性。我们描述了攻击者的定量和定性成本,并提供了在实践中部署污泥的实际考虑。最后,我们研究了美国政府在现实世界中挫败网络对手并对其施加成本的行动。索引术语 —污泥、推动、网络安全、选择
摘要。工业废水处理厂 (WWTP) 中的活性污泥的使用会产生污泥饼形式的副产品。污泥饼给环境带来了新的问题,因为它的堆积会导致土地变得贫瘠、破坏美观、增加微生物活性并污染水和土壤,这可能对人类和环境有害。PT X 是每天产生 80 公斤污泥饼的行业之一。根据实验室结果,X WWTP 污泥饼具有用作有机肥料的潜力。然而,将污泥饼用作有机肥料不符合肥料质量标准,也不能为植物提供最佳效果。众所周知,山羊粪便可以增加污泥饼中的有机肥料含量,符合肥料质量标准。本研究旨在寻找在污水处理厂污泥饼中添加山羊粪便的最佳配方,采用四种处理方式,即未经处理的污泥饼和添加 1.4 kg、2.1 kg 和 2.8 kg 山羊粪便。研究阶段包括原材料的准备、有机肥的生产和有机肥含量的测试。结果表明,堆肥结束时有机肥的物理和化学参数有所增加,即 pH 值(6.6)、C(22.14%)、N(3.55%)、P(4.65%)、K(0.45%)、Ca(0.52%)和 Mg(0.26)),同时含水量降低(15.40%)。在 X TWP 污泥饼中添加山羊粪便和其他添加剂组合可以满足有机肥质量标准。添加 2.1 kg 山羊粪便是增加有机肥的最佳配方。
摘要:本文介绍了使用 Cambi THP ® 技术对污水污泥 (SS) 进行厌氧消化 (AD) 并进行热水解 (THP) 后获得的沼气的能量潜力。所列数据为 Tarn ów (波兰) 污水处理厂 2020 年的数据。文中给出了沼气的详细能量平衡及其在热电联产过程中以及在水锅炉和蒸汽锅炉中产生热量时的使用情况。本文包含工艺流程不同阶段处理的 SS 量以及干物质和干有机物含量的数据。该工厂年运行期间,处理了来自 Tarn ó w 污水处理厂 (WWTP) 和区域 WWTP 的 8684 吨市政 SS 干固体 (tDS),生产出 3,276,497 Nm 3 沼气。所生产沼气的能量潜力为 75,347.06 GJ。沼气的平均热值为 23,021 kJ/Nm 3。获得的沼气产量可满足 THP 100% 的热能需求。研究期间的年平均比沼气转化率为 0.761 Nm 3 /kg 干有机物减少,污泥中有机物含量平均减少量为 64.60%。
多种因素导致 Yulee 工厂产生异味,其中最主要的是温度较低、降雨量较大以及维护该设施所需的固体移动。该工厂类似于堆肥堆,由当地 Rayonier Advanced Materials' (RYAM) 工厂产生的无害有机“加工残留物”组成。这些“加工残留物”主要来自树木。它们包括纤维素纤维、木质生物质和动力锅炉产生的木灰。这些材料的分解会产生气味,如上所述,在某些条件下气味会变得更加明显。重要的是,Yulee 设施不处理垃圾、人类排泄物或传统“垃圾”(这些垃圾在其他市政设施处理)。为什么气味比以前更严重?
微生物在生物废水处理中起关键作用。由于各种微生物结构的不同条件,生物质形式的形式决定了有机化合物转化的效率和机制。但是,比较生物膜和活性污泥中微生物群落的研究结果经常发生冲突。因此,本研究比较了使用16S rRNA测序的杂种反应器中生物膜中细菌群落和活化污泥的组成和发展。统计分析包括鉴定生物膜特征和活性污泥,α和β多样性分析以及网络分析的分类单元。这些分析表明,生物膜细菌群落比激活的污泥社区更丰富,更多样化。在生物膜中的平均数量为1614,而活化污泥的平均数为993,而CHAO1(1735 vs. 1105)和Shannon(5.3 vs. 4.3)生物多样性指数的平均值显着更高。生物膜是硝化剂(例如硝基瘤,硝基螺旋体)和磷积聚生物体(Candidatus累积)的更好环境。生物膜共发生网络中的细菌彼此之间具有更多的连接(基于Spearman的等级相关系数),这表明它们的相互作用比活性污泥中的相互作用更多。
连续的高强度光暴露会抑制厌氧铵氧化(Anammox)细菌,尽管对Anammox反应堆性能的特定影响尚不清楚。这项研究研究了长期光应力对Anammox污泥反应堆的影响,并探讨了茶多酚作为减轻照片氧化损害的振奋干预措施的使用。结果表明,反应器的氮去除效率(NRE)在10,000 Lx的光条件下迅速恶化至41.4%。然而,补充了1mg·l -1和5mgÅL -1茶多酚的反应器分别为75.2%和82.5%。通过清除活性氧(例如×OH和H 2 O 2),以及增强包括总超氧化物歧化酶和gluta thione thione过氧化物酶的活性,添加茶多酚通过清除活性氧的氧化应激来减轻氧化应激。Kuenenia念珠菌受到光的负面影响,而未分类的_f__肉胶质科则在光压力下繁荣发展。这些发现为在光照暴露下开发稳定的氮去除系统的开发提供了见解。