抗生素是最常开处方的药物,已广泛用于预防或治愈人类和兽医疾病,无疑导致大量释放到下水道网络和废水处理系统中,这是一种热点,其中抗生素转化的发生和转化。细胞外聚合物物质(EPS),通过微生物活性分泌的生物聚合物,在细胞粘附,养分保留和毒性耐药性中起重要作用。然而,与抗生素的耐药性和去除相关的污泥EP的潜在作用尚不清楚。这项工作总结了最先进的微生物EPS的组成和物理化学特征,突出了EPS在去除抗生素中的关键作用,评估其在不同的抗生素暴露下的防御性能,并分析可能影响抗抗生素的吸附和生物转化行为的典型因素。接下来,分析了微生物EPS与抗生素抗性基因之间的相互作用。未来的观点,尤其是微生物EPS在抗生素毒性检测和防御方面的工程应用也受到了强调。©2022作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
本研究旨在使用改进的 Stover Kincannon 动力学模型,研究使用混合上流式厌氧污泥床 (混合 UASB) 反应器降解豆腐废水时有机负荷率 (OLR) 的变化。该反应器在 OLR 变化为 1.5-12 kg COD m -3 d -1 和 HRT 为 12 - 24 小时的情况下运行 328 天。在 OLR 为 4.8 kg COD m -3 d -1 和 HRT 为 24 小时的情况下,在 140 天内实现了 86.41% 的较高 COD 去除率和 7700 mL 的沼气产量。观察了改进的 Stover-Kincannon 模型并获得了匹配的数据集。模型中,HRT 变化时获得的动力学值,参数 KB 和 μ max 分别为 3.7、12.97、2.42 mgL -1 d -1 和 0.59、9.41、0.014 mgL -1 d -1 。该模型是去除速率倒数与总负荷速率倒数的图,结果为一条直线。这表明 Stover-Kincannon 模型中底物去除速率受流入混合 UASB 反应器的有机负荷速率 (OLR) 的影响。
摘要:乙酰氨基氨基酚是全球最常用的药物之一,但是由于其广泛使用,它在各种环境矩阵中被发现,例如地表和地面和接地水,沉积物,土壤甚至植物,主要是由于废水的排放以及在农业中的污水污染污泥的使用而引入的。其在某些生物体中的积累可以诱导繁殖,神经毒性或内分泌疾病,因此被认为是一种新兴的污染物。这项研究报告了能够降解扑热息痛的细菌菌株中产生的隔离污泥(WWTPS)。隔离了多达17个细菌菌株,但其中只有两个被鉴定为假单胞菌CSW02和PSEUDOMONAS极australis csw01,能够降解溶液中极高的扑热息痛浓度,是唯一的碳和能源,并且没有以前没有将其描述为ParaceteMol的佩利格拉(Paracetemol)。这些细菌表明,仅在6和4小时中,降解高达500 mg l - 1的能力比文献中描述的任何其他任何其他乙酰氨基氨基糖菌株都要快得多。在降解过程中脱离了高毒性的两个主要的甲酰胺代谢物,4-氨基苯酚和氢喹酮,尽管它们很快消失了,但对于乙酰氨基酚的浓度非常快,高达500 mg l-1。这些发现表明,这两种细菌都是在水和污水污泥中用于扑热息痛生物修复的非常有前途的候选者。还计算了对扑热息痛的IC 50,以实现这两个分离株的生长,表明超级疟原虫CSW01比S. stutzeri csw02对高浓度的扑热息痛和/或其在溶液中的代谢产物的耐受性更高,这是paracetamol DeDgractamol Degradation -s. st. ster c的s. sterz02 ander c的溶液中的原因,这是paracetamol和/或它的代谢物。
摘要 — 选择架构描述了向人们呈现选择的设计。助推是一种旨在使“好”结果变得容易的方面,例如使用密码计量器来鼓励使用强密码。相反,污泥是一种增加交易成本的摩擦,通常被视为对用户的负面影响。扭转这一概念,我们建议通过进攻性地消耗攻击者的时间和其他资源来应用污泥以获得积极的网络安全结果。到目前为止,大多数网络防御都设计得非常强大和有效,并尽快禁止或消灭攻击者。我们的补充方法是部署防御措施,以最大限度地消耗攻击者的时间和其他资源,同时尽可能少地对受害者造成伤害。这与零信任和假设违规的类似思维模式一致。污泥策略通过在攻击之前、期间和之后使用欺骗和真实的设计特征为攻击者战略性地部署摩擦来引入成本高昂的网络防御。我们介绍了有效污泥的特征,并展示了从轻污泥到重污泥的连续性。我们描述了攻击者的定量和定性成本,并提供了在实践中部署污泥的实际考虑。最后,我们研究了美国政府在现实世界中挫败网络对手并对其施加成本的行动。索引术语 —污泥、推动、网络安全、选择
微生物在生物废水处理中起关键作用。由于各种微生物结构的不同条件,生物质形式的形式决定了有机化合物转化的效率和机制。但是,比较生物膜和活性污泥中微生物群落的研究结果经常发生冲突。因此,本研究比较了使用16S rRNA测序的杂种反应器中生物膜中细菌群落和活化污泥的组成和发展。统计分析包括鉴定生物膜特征和活性污泥,α和β多样性分析以及网络分析的分类单元。这些分析表明,生物膜细菌群落比激活的污泥社区更丰富,更多样化。在生物膜中的平均数量为1614,而活化污泥的平均数为993,而CHAO1(1735 vs. 1105)和Shannon(5.3 vs. 4.3)生物多样性指数的平均值显着更高。生物膜是硝化剂(例如硝基瘤,硝基螺旋体)和磷积聚生物体(Candidatus累积)的更好环境。生物膜共发生网络中的细菌彼此之间具有更多的连接(基于Spearman的等级相关系数),这表明它们的相互作用比活性污泥中的相互作用更多。
摘要:本文介绍了使用 Cambi THP ® 技术对污水污泥 (SS) 进行厌氧消化 (AD) 并进行热水解 (THP) 后获得的沼气的能量潜力。所列数据为 Tarn ów (波兰) 污水处理厂 2020 年的数据。文中给出了沼气的详细能量平衡及其在热电联产过程中以及在水锅炉和蒸汽锅炉中产生热量时的使用情况。本文包含工艺流程不同阶段处理的 SS 量以及干物质和干有机物含量的数据。该工厂年运行期间,处理了来自 Tarn ó w 污水处理厂 (WWTP) 和区域 WWTP 的 8684 吨市政 SS 干固体 (tDS),生产出 3,276,497 Nm 3 沼气。所生产沼气的能量潜力为 75,347.06 GJ。沼气的平均热值为 23,021 kJ/Nm 3。获得的沼气产量可满足 THP 100% 的热能需求。研究期间的年平均比沼气转化率为 0.761 Nm 3 /kg 干有机物减少,污泥中有机物含量平均减少量为 64.60%。
摘要:本研究旨在评估机械分解活性污泥 (WAS) 对全规模厌氧消化的影响,同时考虑获得正能量平衡的可能性。结果表明,分解所用能量密度 (ε L ) 的增加伴随着污泥中有机化合物的释放增加(SCOD 从 ε L = 0 kJ/L 时的 211 ± 125 mg O 2 /L 增加到 ε L = 180 kJ/L 时的 6292 ± 2860 mgO 2 /L)。其中一些是挥发性脂肪酸。分解的 WAS 百分比份额也被记录为影响沼气生产效率的关键参数。该参数值从 25% 增加到 100%,即使在分解所用的 ε L 低得多的情况下(因此从污泥絮凝物中释放的有机化合物量要少得多),也会导致沼气产量增加。在 ε L 30 kJ/L 下对流向发酵罐的整个 WAS 流进行分解,可使沼气产量增加 14.1%。这样的盈余将允许生产大约 360 kWh/d 的净电力。因此,浓缩 WAS 的机械分解可能是一种经济合理的强化厌氧污泥稳定化策略。
摘要:本研究旨在评估机械分解活性污泥 (WAS) 对全规模厌氧消化的影响,同时考虑获得正能量平衡的可能性。结果表明,分解所用能量密度 (ε L ) 的增加伴随着污泥中有机化合物的释放增加(SCOD 从 ε L = 0 kJ/L 时的 211 ± 125 mg O 2 /L 增加到 ε L = 180 kJ/L 时的 6292 ± 2860 mgO 2 /L)。其中一些是挥发性脂肪酸。分解的 WAS 百分比份额也被记录为影响沼气生产效率的关键参数。该参数值从 25% 增加到 100%,即使在分解所用的 ε L 低得多的情况下(因此从污泥絮凝物中释放的有机化合物量要少得多),也会导致沼气产量增加。在 ε L 30 kJ/L 下对流向发酵罐的整个 WAS 流进行分解,可使沼气产量增加 14.1%。这样的盈余将允许生产大约 360 kWh/d 的净电力。因此,浓缩 WAS 的机械分解可能是一种经济合理的强化厌氧污泥稳定化策略。
多种因素导致 Yulee 工厂产生异味,其中最主要的是温度较低、降雨量较大以及维护该设施所需的固体移动。该工厂类似于堆肥堆,由当地 Rayonier Advanced Materials' (RYAM) 工厂产生的无害有机“加工残留物”组成。这些“加工残留物”主要来自树木。它们包括纤维素纤维、木质生物质和动力锅炉产生的木灰。这些材料的分解会产生气味,如上所述,在某些条件下气味会变得更加明显。重要的是,Yulee 设施不处理垃圾、人类排泄物或传统“垃圾”(这些垃圾在其他市政设施处理)。为什么气味比以前更严重?
自 20 世纪 80 年代初推出活性污泥模型 1 号 (ASM1) 以来,人们在应用这些模型方面已有十年的经验,并证明了它们在污水处理厂的设计和运行方面的成熟度。然而,这些模型在复杂性和应用准确性方面已经达到了极限。一个例子是,尽管提出了许多扩展 ASM 来描述活性污泥厂中的 N2O 生成动态,但这些模型仍然过于复杂,尚未得到验证。这篇前瞻性论文提出了一种新的愿景,即通过明确整合活性污泥模型中分子数据测量的微生物群落信息来推进过程建模。在这个新的研究领域,我们建议利用先进基因测序技术丰富的分子数据与人工智能与过程工程模型的集成之间的协同作用。这是一个跨学科的研究领域,使两个独立的学科,即环境生物技术,能够联合起来,与建模和工程界合作,为未来可持续的污水处理厂进行新的理解和基于模型的工程。