摘要 - 公路车辆的自动化是一种新兴的技术,在过去十年中迅速发展。自动驾驶汽车对现有的运输基础设施提出了许多跨学科挑战。在本文中,我们对自动驾驶汽车应更改其车道进行算法研究,这是车辆自动化领域中的基本问题,也是大多数“幻影”交通拥堵的根本原因。我们提出了一个预测和决策框架,称为Cheetah(自动驾驶汽车的Change Lane Smart),该框架旨在优化自动驾驶汽车的车道更改操作,同时最大程度地减少其对周围车辆的影响。在预测阶段,Cheetah从周围车辆的历史轨迹中了解了具有深层模型(气体导向模型)的历史轨迹的时空动态,并在不久的将来预测了它们相应的动作。还纳入了全球注意力机制和国家共享策略,以实现更高的准确性和更好的收敛效率。然后,在决策阶段,猎豹通过考虑速度,对其他车辆和安全问题等诸如速度,影响速度等因素,为自动驾驶汽车寻求最佳的车道更改操作。基于树的自适应梁搜索算法旨在降低搜索空间并提高准确性。为了使我们的框架适用于更多场景,我们进一步提出了改进的猎豹(Cheetah +)框架,使自动驾驶汽车适应离开道路并满足驾驶舒适性的要求。广泛的实验提供了证据,表明所提出的框架可以从有效性和效率方面提高最新技术。
对电动汽车的需求,包括两轮和三轮应用,正在繁殖。因此,汽车工程师发现自己被迫寻找解决电池监控,快速充电和阻抗测量的解决方案。模拟数字的工程师了解这些需求,并正在提供解决这些需求的解决方案,包括电池监控评估板,这些评估板支持多达18个系列连接的电池电池,基于SIC的MOSFET,以用ESS支持DCFC站,以及障碍和单个芯片上的电化学前端。
本文基于人工智能驱动的分析模型,为无人机的多学科概念设计框架提供了一个多学科的概念设计框架。这种方法利用了驱动的分析模型,其中包括空气动力学,结构质量和雷达横截面预测,以将定量数据带到初始设计阶段,从而从各种优化的概念设计中选择了最合适的配置。由于设计优化周期,为以后的设计活动提供了更准确的翼,尾部和机身等关键组件的初始尺寸。同时,生成的结构可以通过设计迭代中的反馈循环实现更合适的设计点选择。因此,除了降低设计成本外,这种方法在整个设计过程中还具有很大的时间优势。
1简介汽车行业已成为电动驱动器和电力产品的主要市场。准确的交流电流(AC)和直流电流(DC)电动机在电源转换器供电的广泛的功率和速度上,基于隔热栅极双极晶体管,具有复杂的监控和管理系统已成为现代车辆的固有部分[1]。在这种情况下,探索和测试平台的电池驾驶电动汽车(BEV)完全由电动机推动,如今已引起人们的极大关注。他们允许学习并优化车辆性能,减少真实机器的测试次数并提供安全性。许多研究机构和越来越多的工程学校在其实验室中引入了测试工作台[2]。严重的参考文献描述了在不同的
我们与令人难以置信的社区合作地做到这一点:成千上万的慷慨,充满激情的支持者和捐助者,他们在2013年以非营利组织为非营利组织以来一直支持我们的每一步。
自动驾驶汽车(SDVS)的抽象开发人员与可能的未来有一个特定的想法。公众不得分享其基于的假设。在本文中,我们分析了英国调查(N¼4,860)和美国(n¼1,890)公众的自由文本响应,这些公众询问受访者在想到SDV时会想到什么弹簧,以及为什么应该或不应该开发它们。响应(平均每个参与者的总共27个单词)倾向于提出安全的希望,并且更常规地担心。许多受访者都提出了技术,其他道路使用者与未来之间关系的替代书籍。而不是接受一种主导的公众参与方法,该方法试图使公众从这些观点中教育,而是建议这些观点应视为社会情报的来源,并为建立更好的运输系统做出了潜在的建设性贡献。预期治理,如果要包容,则应寻求理解和整合公众观点,而不是拒绝它们是不合理的或可变的。
Results ......................................................................................................................................... 6
人工智力现在存在于我们日常生活的许多领域中。它有望领导新的和有效的业务模型,以在私营和公共部门中有效和以用户为中心的服务。在深度学习,(深度)增强学习和神经进化技术方面的AI进步可以为人工通用智能(AGI)铺平道路。但是,AI的开发和使用也带来了挑战。数据语料库中普遍存在用于训练AI和机器学习系统的固有偏见归因于大多数这些挑战。此外,多个实例强调了在基于动力的决策中需要隐私,公平性和透明度的必要性。本书系列将为研究人员,领导者,决策者和决策者提供一条途径,以分享AI最前沿的研究和见解,包括其在道德,可解释的,可解释的,隐私的,可信赖的,可信赖的和可持续的方式中的使用。
要允许复制或重新出版,请联系美国航空与宇航学院1801 Alexander Bell Drive,Suite 500,Reston,VA,20191–4344