该研究探讨了超声测试在分析日历过程对锂离子电池中石墨阳极微结构的影响。它检查了日历参数(例如滚动差距和线路速度)之间的相关性,及其对超声信号特征的影响。我们的研究表明,不同的样本厚度对日历过程的反应不同。特殊的是,在筛选后较薄的样品(<45μm)的较薄样品(<45μm)的幅度增加,表明材料的均匀性提高,而较厚的样品(>50μm)表明,在声学信号中衰减减轻的飞行时间增加了。值得注意的是,较薄的电极(45μm)的密度从0.95增加到1.6 gr/ cm 3,在相同的日历条件下从1.0 Gr/ cm 3上升到较厚的电极(100μm)的密度增长。这项最初的研究证实了声波形的属性与日历过程参数中的变化之间存在明显的相关性。这些结果将构成未来研究的基础,该研究调查电极制造的可能内感应,过程控制和质量评估。从这项研究的表征过程中获得的数据有可能支持数据驱动的模型,以使用机器学习方法来预测Calen的性能。
血吸虫病是影响 79 个不同国家数百万人的最重要的被忽视的热带病 (NTD) 之一。世界卫生组织 (WHO) 已指定到 2020 年和 2025 年要实现的两个控制目标 - 发病率控制和消除作为公共卫生问题 (EPHP)。大规模药物管理 (MDA) 是控制血吸虫病的主要方法,但有时很难确保每年或每两年提供足够的最有效药物吡喹酮来治疗数百万感染者,也无法在地方性感染地区的目标社区实现高治疗覆盖率。开发替代控制方法仍然是当务之急。在本文中,我们使用基于个体的随机模型,分析单独添加新型疫苗或与药物治疗相结合是否是更有效的控制策略,以实现 WHO 目标,以及与单独使用 MDA 相比实现这些目标的时间和成本。我们分析的主要目的是帮助促进决策,以便将有前途的候选疫苗通过 I、II 和 III 期人体试验,转化为最终产品,供资源匮乏的环境使用。我们发现,在低到中等传播环境中,疫苗接种和 MDA 都极有可能在 15 年内实现世卫组织的目标,而且可能具有成本效益。在高传播环境中,仅靠 MDA 无法实现目标,而疫苗接种与 MDA 结合可以实现两个目标。在这些环境中,只要每全程疫苗接种费用不超过 7.60 美元,即使是短期疫苗接种也是具有成本效益的。疫苗的公共卫生价值取决于疫苗保护的持续时间、接种疫苗前的基线流行率和世卫组织的目标。2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
该文档最初是在2004年3月3日在Roads Advisory Group上的交通管理人员认可的。修订得到咨询小组的认可,并获得了主要道路执行董事计划和技术服务的批准。咨询小组由西澳大利亚州主要道路(主要道路),澳大利亚交通规划与管理研究所(WA部门)(AITPM),民用承包商联合会(CCF),公共工程工程研究所(WA)(WA)(IPWEA)(IPWEA),交通管理协会(TMAA),WA当地政府协会(WALGA),交通管理培训培训培训商和工程师(WA)。由主要道路,IPWEA(WA Division)和Walga的成员组成的专业技术委员会提供了有关本文档各个部分的技术建议。对本文档的修订可能会不时地反映出技术,标准或立法的变化以及行业的反馈,但尚未得到咨询小组的认可。该文档的用户被警告以确保他们使用的是当前的文档,该文档可在Main Roads网站www.mainroads.wa.gov.au上找到;转到“技术与商业”>“在道路上工作”
克莱姆森大学的四名研究人员帮助开发了一种洪水疏散工具,该工具使用人工智能来帮助预测洪水、识别危险道路并验证安全疏散路线。该工具将人工智能 (AI) 与人类知识结合在一起。研究人员正在利用这种人机协作 (HAT) 伙伴关系来创建一个智能模型,以解决南卡罗来纳州偏远沿海农村社区的洪水疏散决策问题。当前的洪水疏散模型包括地理信息系统 (GIS) 和基础设施规划方法,这些方法不使用人工智能。
由于移动电话和 EMS 业务持续受到新老客户的强劲需求,推动了销售量增长,Dixon 在收入方面取得了超出预期的成绩。移动电话和 EMS 部门同比增长了 251%。摩托罗拉出口订单的增加以及大型新客户的加入将预示着该部门未来发展良好。其他关键业务(如照明和电视)面临着需求挑战,而家电则实现了两位数的增长。管理层通过在现有业务垂直领域增加新客户/产品并专注于新领域,成功应对了低迷的需求环境。我们相信 Dixon 将在中期继续实现强劲增长,因为 1)公司能够持续增加新客户;2)冰箱和 IT 硬件等新产品类别将从下一财年开始产生有意义的贡献;3)通过提供新的技术先进解决方案增加 ODM 供应;4)挖掘出口机会;5)投资于后向整合以提高效率。在利润率方面,公司正寻求通过扩大规模、向后整合和成本优化计划来提高利润率。该公司还谨慎地运用资本,并不断努力提高回报率。考虑到业绩改善和管理层对吸引新客户表现出的信心,我们将目标市盈率维持在 55 倍。不过,我们将股票评级上调至增持,该公司在应对挑战中继续实现强劲而优质的增长。
埃里克·努森的职业生涯一直致力于研究大脑如何处理信息、从经验中学习以及选择信息以引起注意。他早期的研究绘制了鸟类处理听觉空间信息和调节定向行为的神经通路。一项重大进展是他与加州理工学院的马克·科尼西 (Mark Konishi) 一起发现了仓鸮中脑听觉空间的地形图,该图是复杂的神经计算的结果。随后,他与斯坦福大学的同事展示了早期生活经历如何塑造创建此计算图的电路,确定了适应性可塑性的特定位置以及学习规则和机制,并发现了增加成年动物可塑性的方法。后来,他的研究转向控制选择性注意的机制。他与斯坦福大学的同事一起开发了量化鸟类空间注意力影响的行为范式,并建立了操纵前脑信号的方法,以类似注意力的方式调节感官信息。通过将计算方法与脑切片技术相结合,他展示了特定脑回路如何选择信息以进行认知决策,以及其他脑回路如何抑制分散注意力的信息。
对帕金森氏病的日常活动(ADL)的影响产生了良好的影响,这一点很重要,这一点很重要,这也可能导致同情心,也可能导致更好的护理和结果。5虚拟现实(VR)提供了一个教育平台,使学习者参与各种体验,包括无法像患者的观点那样经历的情况。6-8几项研究取得了积极的结果,例如使用VR实验的参与者观点改善和移情发展,并说明了对帕金森病患者重新关联的VR的使用。9然而,对身临其境的VR Parkinson疾病经验的发展和分析尚未在专业背景下进行描述。因此,我们为学生创建了一个分解的课程,以通过VR来体验患有帕金森氏病的挑战,并研究了学生对专注于使用VR的经验的看法。
Sherman C. Watson Jr. 上校于 1997 年加入美国陆军,担任补给专家,在阿拉巴马州国民警卫队服役,之后于 2001 年 5 月从奥本大学蒙哥马利分校获得美国陆军野战炮兵少尉的任命,并获得了文科学士学位。他还拥有韦斯特大学的管理学硕士学位、高级军事研究学院 (SAMS) 的军事行动艺术与科学硕士学位以及美国陆军战争学院的战略研究硕士学位。Watson 上校的第一个任务是担任俄克拉荷马州西尔堡第 18 野战炮兵团第 2 营第 212 火力旅的排长。 2003 年,他被派往支援伊拉克自由行动。随后,他被派往德克萨斯州布利斯堡,在德克萨斯州布利斯堡的第 1 骑兵师第 4 旅第 27 野战炮兵营第 4 营,在那里指挥 Bravo 炮台,并在 2006 年至 2008 年期间部署到伊拉克摩苏尔支援伊拉克自由行动。后来,他担任特遣队火力支援观察员、行动组轮换演习规划师和德国霍恩费尔斯联合多国战备中心行动组计划主管。2013 年至 2014 年,沃森上校被任命为阿富汗喀布尔国际安全援助部队联合司令部 (IJC) CJ35 未来行动的行动规划师。调任后,他被分配到第 1 装甲师,担任第 27 野战炮兵师第 4 营的营级作战官和第 1 装甲师炮兵旅的执行官。2016 年,沃森上校被分配到夏威夷斯科菲尔德兵营的第 25 步兵师总部,担任 G3 未来行动的师总部规划师。2017 年,沃森上校担任伊拉克/叙利亚总参谋部 (SGS) 坚定决心行动 (OIR) 的秘书。随后,他于 2018 年 5 月至 2020 年 6 月指挥位于德克萨斯州胡德堡的第 82 野战炮兵团第 3 旅战斗队第 2 营。随后,他于 2020 年 6 月至 2021 年 6 月担任佛罗里达州赫尔伯特场陆军联合支援队高级陆军教官,之后于 2021 年 6 月至 2022 年 6 月担任塔斯基吉大学军事科学教授。他最近的职务是担任位于肯塔基州诺克斯堡的第五军总部火力队长。沃森上校获得的奖项和勋章包括铜星勋章 (1 OLC)、功绩服务勋章 (3 OLC)、国防功绩服务勋章、陆军表彰勋章 (4 OLC)、战斗行动徽章和跳伞员徽章。
作者 JNE WALKER · 被引用 440 次 — 生物能量来自太阳。光合作用收集的光能……已用于建立 ATP syn- 的亚基组成。