该部门应在每年 10 月 1 日或之前向环境审查委员会报告 1973 年《沉积物污染控制法》(SPCA)的实施情况。能源、矿产和土地资源司负责实施 SPCA。全州共有 55 个由县或市政府实施的授权 SPCA 计划。2022 年 2 月,Knightdale 镇获得了管理和执行 SPCA 的授权。该部门收到的新申请总数从 2020-21 财年的 2,428 份增加到 2021-22 财年的约 2,600 份。新扰动土地总数从 2020-21 财年的 32,317 英亩增加到 2021-22 财年的 33,425 英亩。沉积物检查次数从 2020-21 财年的 12,743 次减少到 2021-22 财年的 11,727 次。
本手册中的信息将接受持续审查和评估。本手册的所有修订都必须在实施前得到 EGLE 的批准。意见和问题应直接向环境现场服务工程师 (EFSE) 提出。本手册为行政、工程和技术人员提供指导。工程实践要求专业人员在决策时结合使用技术技能和判断力。工程判断是必要的,以便决策能够考虑到独特的特定场地条件和考虑因素,从而在预算范围内提供高质量的产品,并保护公众健康、安全和福利。本手册提供了一般操作指南;但是,据了解,有时需要进行调整、调整和偏差。创新是推进工程实践状态和开发更有效、更高效的工程解决方案和材料的关键基础要素。因此,我们的工程手册必须提供一种工具来推广、试行或实施提供效率和优质产品的技术或实践,同时维护公众的安全、健康和福利。当与这些指导材料中的技术信息产生重大偏差时,应在允许的时间范围内采取行动之前与专家、技术委员会和/或政策制定机构进行合理的协商。还应确保这些协商能够消除任何潜在的利益冲突(无论是已知的还是其他的)。MDOT 领导层致力于创新文化,以优化工程解决方案。
水性Zn-Ion电池(Azibs)代表了锂后系统中一种安全可持续的技术,尽管对阴极处的物质行为的不良理解阻止了Effi Cient Azibs的全面发展。Znmn 2 O 4(ZMO)被认为是锂离子电池的良好确定的Limn 2 O 4阴极的阴极候选者之一,但是在水性环境中锌离子存在的情况下,其电化学机制尚不清楚并且仍在辩论。在这项工作中,我们通过脉冲激光沉积(PLD)合成了纳米结构的ZMO薄膜,并通过微渗透,光谱和衍射技术进行了广泛的表征,评估了膜的特性和退火条件如何影响膜的特性。自给自足的性质和对纳米级的高度控制性使薄膜成为研究水溶液中材料的电化学的理想模型系统,并强调膜性能对其电化学反应的影响。我们强调了氧气在膜孔隙率调节中的关键作用,以及沉积压力和退火温度的综合作用,以产生具有量身定制特性的膜在形态,结晶度和Zn stoichiimetry方面。报道了一种复杂的氧化还原机制,涉及多种并发反应和氢氧化锌硫酸锌水合物(ZHS)的形成,以及膜孔隙率对膜以较高扫描速率的伏安行为的影响。我们的结果证实了ZMO材料的复杂电化学机制,它不仅涉及Zn 2 +插入/提取/提取,而且还涉及Mn 2 +从电解质中的关键参与,并为工程ZMO基的纳米级设计铺平了道路。
实现 AS-ALD 的一种常见方法是使用自组装单分子层 (SAM) 作为抑制剂,以优先阻止一种表面材料上的 ALD 而不是另一种。 [7–14] SAM 是一种有机分子,由头部基团(也称为锚定基团)、主链(通过范德华相互作用参与自组装过程)和尾部官能团组成,其中尾部官能团会影响 SAM 形成后的最终表面特性。通过选择仅与特定表面反应的 SAM 分子头部基团,可以实现选择性 SAM 形成。例如,已证实烷硫醇和烷基膦酸可在金属基材上形成 SAM 结构,但不会在 SiO 2 上形成。 [15–21] 通过使用这两种 SAM 分子作为金属表面 ALD 抑制剂,已有多次成功演示在金属/电介质图案的电介质区域上选择性沉积电介质膜(电介质-电介质,或 DoD)和金属膜(金属-电介质,或 MoD)。[7–12,22,23]
摘要:本研究采用定向能量沉积(DED)工艺在SCM420基体上沉积Fe-8Cr-3V-2Mo-2W工具钢粉末。本研究重点研究了沉积的Fe-8Cr-3V-2Mo-2W的力学性能以及热处理对其的影响。观察了沉积后热处理引起的沉积区域微观结构特征的变化。然后分析了热处理对力学性能的影响,并对沉积材料进行了硬度、磨损、冲击和拉伸试验。将这些性能与商用工具钢粉末M2沉积材料和渗碳试件的性能进行了比较。在沉积的Fe-8Cr-3V-2Mo-2W层中,通过后热处理获得了增加的马氏体相分数,并且碳化物析出量也增加了。这使得热处理后的硬度从48 HRc增加到62 HRc,耐磨性也显着提高。吸收的冲击能量从热处理前的 11 J 降低到热处理后的 6 J,但抗拉强度却从 607 MPa 大幅提高到 922 MPa。与 M2 沉积表面相比,Fe-8Cr-3V-2Mo-2W 沉积物的表面硬度降低了 3%,断裂韧性降低了 76%,但抗拉强度提高了 56%。与渗碳 SCM420 相比,Fe-8Cr-3V-2Mo-2W 沉积物的表面硬度和耐磨性提高了 3%,断裂韧性降低了 90%,抗拉强度提高了 5%。这项研究表明,与渗碳相比,通过 DED 进行的表面硬化可以表现出相似或更优异的机械性能。
显示指数衰减拟合 y = 846.9 nm*e (-x/1174.83nm) ,R 2 = 0.96。(b)1 wt% PVP 以 0.1 mL/hr 喷涂在不同厚度的 Parylene C-on-Si 基板上 60 分钟。由于气相沉积的保形特性,水平误差线不可见。蓝色轨迹是指数衰减拟合 y= 815.6 nm*e (-x/567.4 nm) ,R 2 = 0.98。(c)1 wt% PVP 以 0.1 mL/hr 喷涂在不同厚度的 SU-8-on-Si 基板上 60 分钟。黑色轨迹是指数衰减拟合 y = 804.4 nm*e (-x/348.8 nm) ,R 2 = 0.51。
氮化铜(Cu3N)是一种在微电子和可再生能源领域有良好应用前景的材料,其质量在很大程度上取决于沉积条件,其中温度是一个关键参数。本研究采用反应溅射技术在环境温度至 300°C 的温度下沉积 Cu3N 薄膜。通过 XRD、VIS-NIR 光谱法和霍尔效应测量评估了薄膜的结构、光学和电学特性。为了确定薄膜的质量,使用了三个关键指标:位错密度、Urbach能量和载流子迁移率,这项工作的主要目标是在不损害材料化学完整性的情况下找到这些指标的最佳值,因为特性表明,在高温下,结构和电学变化表明Cu3N部分分解为金属铜。
■ 规划必须描绘平均低水位 (MLW) 时的现有水深。■ 规划必须确定低于平均低水位的项目深度(以英尺为单位)。■ 注释部分必须说明进行水文调查的日期和时间 – 该日期和时间必须在 SSAP 提交日期后的 6 个月内。■ 必须划出拟议的疏浚区域。清楚地确定维护和/或新疏浚的区域■ 确定项目现场 500 英尺范围内的船舶加油站的位置。■ 确定项目现场 500 英尺范围内所有排水口或进水口的位置。■ 确定项目现场内和附近的所有水中结构。■ 除非您请求部门确定样本位置(请参阅第 5 页),否则拟议的样本位置必须叠加在水文调查上。■ 有关更多详细信息,请参阅附录 G,第 III-A-2 章。
原子层沉积 (ALD) 是一种薄膜沉积技术,已广泛应用于半导体行业,用于生产微电子和其他设备。ALD 的独特之处在于它通过一次沉积一层原子层来精确均匀地沉积材料层。本文全面概述了 ALD,包括其历史、原理、应用和当前的最新研究成果。随着各行各业对高质量薄膜的需求不断增加,ALD 的前景一片光明,使其成为生产先进设备和系统的有前途的技术。