胰腺神经内分泌肿瘤(PNET)是第二常见的胰腺肿瘤。然而,除了涉及多个内分泌肿瘤1(MEN1),ATRX染色质重塑剂和死亡结构域相关蛋白基因的突变之外,对它们的肿瘤驱动因素的了解鲜为人知,这些突变在约40%的散发性PNET中发现。PNET的突变负担低,因此表明其他因素可能有助于其发展,包括表观遗传调节剂。这样的表观遗传过程,DNA甲基化,通过5'methylcytosine(5MC)的沉默基因转录,这通常是由基因启动子周围富含CPG的富含CPG的DNA甲基转移酶促进的。然而,5'Hydroxym甲基胞嘧啶是胞质脱甲基化过程中的第一个表观遗传标记,并且反对5MC的功能与基因转录相关,尽管其意义尚不清楚,因为它与常规的Bisulfite转换技术相关,因为它与5MC没有区别。基于阵列的技术的进步促进了PNET甲基甲基组的研究,并使PNETs通过甲基化体特征聚集,这有助于预后和发现新的异常调节基因,这些基因有助于肿瘤。本综述将讨论DNA甲基化的生物学,其在PNET发育中的作用以及对表观基因组靶向疗法的预后和发现的影响。
基因医学具有巨大潜力,可以精准治疗多种人类疾病的根本原因,但该领域历来因递送这一核心挑战而受阻。纳米粒子是一种与天然病毒大小相同的工程构造,其设计目的是为了更接近地模拟病毒的递送效率,同时具有安全性更高、载货灵活性更高、靶向性更强和制造更简便等优势。非病毒基因转移纳米粒子在临床上取得进展的速度正在加快,FDA 最近批准了多种非病毒核酸递送纳米粒子配方的临床验证,用于表达和沉默基因。虽然大部分进展来自脂质纳米粒子配方,但其他用于基因转移的纳米材料也取得了重大进展,具有生物降解性、可扩展性和细胞靶向性等优点。本综述重点介绍了该领域的现状、目前在递送方面面临的挑战以及工程纳米材料应对这些挑战的机会,包括实现长期治疗性基因编辑。讨论了利用不同类型的纳米材料和不同载体进行基因转移(DNA、mRNA 和核糖核蛋白)的递送技术。介绍了临床应用,包括用于治疗囊性纤维化等遗传疾病。
胰腺神经内分泌肿瘤 (PNET) 是第二大最常见的胰腺肿瘤。然而,除了涉及多发性内分泌肿瘤 1 (MEN1)、ATRX 染色质重塑基因和死亡结构域相关蛋白基因的突变(约 40% 的散发性 PNET 中存在这些基因突变)之外,人们对其致瘤驱动因素知之甚少。PNET 的突变负担较低,因此表明其他因素可能促使其发展,包括表观遗传调节因子。DNA 甲基化是一种这样的表观遗传过程,它通过 5'甲基胞嘧啶 (5mC) 沉默基因转录,这通常由基因启动子周围富含 CpG 区域的 DNA 甲基转移酶促进。然而,5'羟甲基胞嘧啶是胞嘧啶去甲基化过程中的第一个表观遗传标记,与 5mC 的功能相反,与基因转录有关,尽管其重要性尚不清楚,因为当仅使用常规亚硫酸氢盐转化技术时,它与 5mC 难以区分。基于阵列的技术的进步促进了 PNET 甲基化组的研究,并使 PNET 能够通过甲基化组特征进行聚类,这有助于预测和发现导致肿瘤发生的新的异常调控基因。本综述将讨论 DNA 甲基化的生物学、其在 PNET 发展中的作用以及对预测和发现表观基因组靶向疗法的影响。
摘要:在特定基因的调节顺式元素处异常的DNA高甲基化在许多病理状况中,包括心血管,神经系统,免疫学,胃肠道和肾脏疾病以及癌症,糖尿病等。因此,实验和治疗性DNA脱甲基化的方法具有表现机械意义,甚至表观遗传改变的因素的巨大潜力,并且可能为表观遗传治疗方案打开新的途径。然而,基于DNA甲基转移酶抑制剂的现有方法不适合于具有特定序列的疾病治疗疾病并提供有限的实验价值。因此,基因特异性表观遗传编辑是对沉默基因表观遗传重新激活的关键方法。可以通过利用序列依赖性的DNA结合分子(例如锌纤维蛋白阵列(ZFA),转录激活剂(TALE)和定期散布的短palindromic的短palindromic重复重复的死亡cas9(CRISPR/DCAS9)来实现脱甲基化。 合成蛋白,其中这些DNA结合结构域与DNA脱甲基酶(例如十个时期易位(TET)和胸腺胺DNA糖基化酶(TDG)酶融合,成功诱导或增强了目标位点的转录反应性。 但是,许多挑战,包括对融合构建体传递的转基因的依赖,仍然需要解决。 在这篇综述中,我们详细介绍了基因特异性DNA去甲基化的当前和潜在方法,作为一种新型的基于表观遗传编辑的治疗策略。脱甲基化。合成蛋白,其中这些DNA结合结构域与DNA脱甲基酶(例如十个时期易位(TET)和胸腺胺DNA糖基化酶(TDG)酶融合,成功诱导或增强了目标位点的转录反应性。但是,许多挑战,包括对融合构建体传递的转基因的依赖,仍然需要解决。在这篇综述中,我们详细介绍了基因特异性DNA去甲基化的当前和潜在方法,作为一种新型的基于表观遗传编辑的治疗策略。
理论总讲座:60学分:4目标:本课程的目的是介绍和启发学生微生物的作用及其在工业生物技术,生物转化,生物转化,产品恢复,生物烯基产生,生物烯基产生以及各种环境过程中的生物技术应用中的作用及其在各种生物技术应用中的作用。纸质设置和考官的说明:问卷将有四个部分。审查员将共同设置九个问题,其中包括每个单元中的两个问题,以及一个涵盖整个教学大纲的简短答案类型的强制性问题。学生将尝试每个单位和强制性问题。除非指定,否则所有问题都可能带有相等的分数。生物修复中的微生物:异种生物的降解,矿物质恢复,从水性播放的第4单元(RNAi)(15小时)RNAi(15小时)RNAi及其在沉默基因中的应用,耐药性,治疗性,治疗性,治疗学和主机相互作用的病原体智力财产patents,copymarks单元1(微生物生物技术及其应用)(15小时)微生物生物技术学:范围及其在人类治疗学中的应用,农业(生物肥料,PGPR,霉菌,菌根),环境和食品技术的应用和真核微生物的应用:生物核心的应用程序:药物产业中的酵母治疗和工业生物技术重组微生物生产过程 - 链蛋白酶酶,重组疫苗(乙型肝炎B疫苗)微生物多糖和多糖和多植物,微生物的微生物生产,生物塑料 - 基于生物塑料的基于微生物生物体的生物型(15小时)(15小时)(15小时)(15小时)(15小时(15次)(15级化)类固醇和固醇生物催化过程及其工业应用:高果糖糖浆的生产以及可可脂的生产微生物替代品及其恢复微生物产品纯化:过滤,离子交换和亲和力色谱技术固定方法及其应用:全细胞的3(整个细胞)和环境3(Microbilization Bio-Envirencation and Bio-Envoriction and Bio-eth)Bio-eth bio-eth bio-Energy((生物柴油生产:木质纤维素废物和藻类生物量的商业生产,沼气生产:使用微生物培养的甲烷和氢生产。
方法” 首席研究员:Vania Broccoli 博士 - CNR-米兰神经科学研究所 - IRCCS Ospedale San Raffaele,米兰 弗里德赖希共济失调 (FA) 是一种遗传性神经退行性疾病,导致步态和肢体进行性共济失调、构音障碍、腱反射丧失、锥体征和脊柱侧弯,并伴有心肌病和糖尿病。在某些情况下,患者会出现听力障碍和因视神经萎缩导致的视力严重丧失。关于这种疾病病理机制的大部分研究都集中在小脑和背神经节感觉神经元的退化。人们对视觉功能障碍和视网膜神经元退化的根本原因知之甚少。 我们的小组从 2 名患有中度或重度 AF 神经症状的患者体内生成了重编程干细胞 (iPSC),这 2 名患者分别因 Frataxin 基因中 GAA 性状的短暂或较大扩增而引起。在这个项目中,iPSC 细胞将分化为视网膜、感觉背神经节和大脑皮层的神经元,以研究细胞和线粒体的病理变化。通过比较分析,我们可以了解不同神经元类别中病理过程的进展和动态,这些神经元类别对 Frataxin 基因的失活更敏感(背神经节感觉神经元和视网膜神经元)或更抗性(大脑皮层神经元)。该项目的第二部分旨在利用 Cas9 蛋白生成“基因编辑”系统,目的是通过表观遗传机制重新激活沉默的 Frataxin 基因。通过这种方式,可以去除沉默基因的染色质修饰,诱导其启动子的重新激活和基因的重新表达。这种策略的优势在于,它能够以自身水平的表达激活内源基因,从而避免传统基因治疗方法中可能出现的基因过度表达引起的副作用。该系统的有效性将通过在患者成纤维细胞和疾病小鼠模型中重新激活 Frataxin 基因的能力来评估。还将研究 Frataxin 重新激活是否能够恢复以及在多大程度上恢复患者 iPSC 中存在的细胞和线粒体缺陷。该项目旨在通过使用患者干细胞生成受疾病不同影响的各类神经元,获得有关 FA 病理机制的新知识。此外,还将开发新的分子工具,可用于重新激活疾病中沉默的 Frataxin 基因,从而成为 AF 的新精准医疗治疗选择。 Tipo Ricerca:工作室预临床 Costo globale del Progetto 320.000 €,持续时间 2 anni(2022 年 4 月 – 2024 年 4 月)
近年来,植物基因组学取得了重大进展,研究人员能够识别负责植物生长、发育和逆境反应的基因和基因组区域。2019 年植物基因组学特刊汇集了 57 篇论文,深入探讨了植物基因组学的各个方面,包括基因发现、数量性状位点(QTL)鉴定、基因组预测、基因组编辑、植物叶绿体基因组测序和比较分析、microRNA 分析和比较基因组学。这些研究广泛采用结合生物信息学和转录组分析的综合研究方法来识别响应各种生物和非生物逆境的基因 [ 1 , 2 ]。该方法包括(1)从参考基因组及其注释中全基因组识别所研究的基因家族,对已识别基因进行生物信息学分析,如染色体分布、基因结构、相似性和重复、保守结构域和基序分析以及系统发育分析; (2) 使用来自 Illumina RNA-Seq 测序和/或实时 PCR 分析的转录组数据,对不同胁迫处理下不同发育阶段的不同组织进行表达谱分析,并研究响应研究性状的基因沉默。使用这种方法,在 22 篇论文中,研究了已报道的各种基因家族,以识别响应非生物胁迫、果实成熟、种子发育、种子产量和花粉发育的基因,涉及 12 多个物种,例如番茄、小麦、桉树、烟草、葡萄、拟南芥、番茄、木薯、芜菁、陆地棉、谷子和西瓜。这些基因家族包括2-氧代戊二酸依赖性双加氧酶(2OGD)、细胞分裂素氧化酶/脱氢酶(CKX)、钙依赖性蛋白激酶(CPK)、核转运蛋白β、VQ、水通道蛋白、赤霉酸刺激的拟南芥(GASA)、YABBY转录因子、B3结构域转录因子、多聚半乳糖醛酸酶(PG)和果胶甲酯酶(PME)、MADS-box转录因子、WRKY转录因子、teosinte-branched 1/cycloidea/增殖(TCP)转录因子、III类过氧化物酶(POD)、糖苷水解酶家族1β-葡萄糖苷酶、RNA编辑因子、蛋白磷酸酶(PP2C)、LIM、油菜素类固醇信号激酶(BSK)和查尔酮合酶(CHS)。微小RNA(miRNA)是一类小RNA分子,在基因表达中发挥着重要的调控作用。两篇论文探讨了miRNA在不同植物物种中的作用。第一篇论文开发了一种人工miRNA前体系统,可以在拟南芥和水稻中高效克隆和沉默基因。该系统可以成为这些作物功能基因组学研究的宝贵工具[3]。第二篇论文鉴定并描述了亚麻籽(一种重要的油料作物)正在发育的种子中的miRNA[4]。结果表明,miRNA 在种子发育过程中发挥着重要作用,可以作为作物改良的靶标。总体而言,这些研究有助于我们了解 miRNA 在植物生长发育中的调控作用,并有望应用于作物改良。GWAS 已广泛用于识别与植物重要性状相关的 QTL 或数量性状核苷酸 (QTN)。本期的一篇精彩论文是关于与西瓜驯化相关的瓜氨酸变异的 GWAS 匹配单倍型网络 [ 5 ]。该论文确定了控制瓜氨酸合成的基因组区域,瓜氨酸是一种非蛋白氨基酸,在植物的生长发育中起着至关重要的作用。
(www.pichia.com),在这种酵母中成功表达了5000多种不同的蛋白质(Schwarzhans等,2017)。在P. p. p. p. p. p. p. p. p. p. opterer工程中的典型策略包括启动子工程(Nong等,2020; Lai等,2024; Zhou等,2023),信号肽修改(Lie等,2015),拷贝数的增加(Liu等,2020年; putteas et ease; wang al。 2019年),以及伴侣因子的引入(Zheng等,2019;Raschmanová等,2021)。 但是,基因组中的直接基因敲除可以导致P. P. P. P. P. p. p. pastoris代谢途径内的特定功能的丧失,从而破坏其整体代谢网络。 相比之下,利用合成生物学工具调节基因表达可能比传统的敲除或过表达方法更有效。 基因表达调节是许多细胞过程的基础(De Nadal等,2011; Nielsen和Keasling,2016年)。 当前,微生物中基因调节的主要工具是定期间隔短的短质体重复序列(CRISPR)系统的。 但是,使用CRISPR进行基因激活或抑制通常需要在CRISPR系统中蛋白质失活,添加激活或抑制域,以及仔细选择合适的SGRNA靶位点。 因此,CRISPR系统相对复杂且耗时。 此外,CRISPR的应用还受到宿主细胞接受度,异物蛋白质表达效率和目标位点选择准确性等因素的影响,这使得优化过程更加繁琐。在P. p. p. p. p. p. p. p. p. p. opterer工程中的典型策略包括启动子工程(Nong等,2020; Lai等,2024; Zhou等,2023),信号肽修改(Lie等,2015),拷贝数的增加(Liu等,2020年; putteas et ease; wang al。 2019年),以及伴侣因子的引入(Zheng等,2019;Raschmanová等,2021)。但是,基因组中的直接基因敲除可以导致P. P. P. P. P. p. p. pastoris代谢途径内的特定功能的丧失,从而破坏其整体代谢网络。相比之下,利用合成生物学工具调节基因表达可能比传统的敲除或过表达方法更有效。基因表达调节是许多细胞过程的基础(De Nadal等,2011; Nielsen和Keasling,2016年)。当前,微生物中基因调节的主要工具是定期间隔短的短质体重复序列(CRISPR)系统的。但是,使用CRISPR进行基因激活或抑制通常需要在CRISPR系统中蛋白质失活,添加激活或抑制域,以及仔细选择合适的SGRNA靶位点。因此,CRISPR系统相对复杂且耗时。此外,CRISPR的应用还受到宿主细胞接受度,异物蛋白质表达效率和目标位点选择准确性等因素的影响,这使得优化过程更加繁琐。在基因激活中,需要引入其他转录激活剂,而在基因抑制中,抑制因子必须进行精确设计和交付,以确保特定的调节。因此,尽管具有强大的基因调控能力,但CRISPR系统的操作复杂性和时间成本很高(Casas-Mollano等,2020; Chen等,2020)。相比,RNA干扰(RNAi)直接靶向RNA,影响蛋白质翻译,并为基因调节提供了更简单的方法。RNAi是一种由双链RNA(DSRNA)激活的基因沉默途径(Drinnenberg等,2009),由核糖核酸酶III(RNAseIII)酶处理,该酶加工成小型小型干扰RNA(sirnas)。dicer是一种酶,可将双链RNA裂解成小siRNA片段。这些siRNA随后引导参与RNA裂解的Argonaute蛋白靶向和裂解转录本,有效地沉降基因表达(Wang等,2019)。RNAi系统及其基本组件(dicer,argonaute和sirnas)通过简单的质粒转化步骤提供了一种更直接和灵活的方法来沉默基因。这减少了时间和精力,从而促进了各种菌株基因抑制策略的快速发展(Crook等,2014)。本报告详细介绍了P. P. P. P. P. rnai系统的第一个建立。可以创建这样的系统的假设是基于观察结果,即引入Argonaute蛋白和siRNA到P. p. p. p. p. p. p. p. p. p. p. p. p. p. p. p. p. apastoris。基因修饰的P. p. p. p. p. p. press这表明在P. Pastoris基因组中编码丁香样蛋白的基因的潜在存在。这项研究成功地证明了通过引入Hairpin RNA通过RNAi系统抑制单基因(增强的绿色荧光蛋白(EGFP))和双基因(EGFP /组氨酸(His))。