本文档中提供的信息被认为是准确和可靠的。但是,江苏杰杰微电子有限公司对未考虑此类信息或超出此类信息范围使用所造成的后果不承担任何责任。本文档中提到的信息如有更改,恕不另行通知,除非签署协议,否则江苏杰杰将遵守协议。本文档中提供的产品和信息不侵犯专利。江苏杰杰对因使用此类产品和信息而可能侵犯第三方其他权利的行为不承担任何责任。
本文档中提供的信息被认为是准确和可靠的。但是,江苏杰杰微电子有限公司对未考虑此类信息或超出此类信息范围使用所造成的后果不承担任何责任。本文档中提到的信息如有更改,恕不另行通知,除非签署协议,否则江苏杰杰将遵守协议。本文档中提供的产品和信息不侵犯专利。江苏杰杰对因使用此类产品和信息而可能侵犯第三方其他权利的行为不承担任何责任。
本文档中提供的信息被认为是准确和可靠的。但是,江苏杰杰微电子有限公司对未考虑此类信息或超出此类信息范围使用所造成的后果不承担任何责任。本文档中提到的信息如有更改,恕不另行通知,除非签署协议,否则江苏杰杰将遵守协议。本文档中提供的产品和信息不侵犯专利。江苏杰杰对因使用此类产品和信息而可能侵犯第三方其他权利的行为不承担任何责任。
本文档中提供的信息被认为是准确和可靠的。但是,江苏杰杰微电子有限公司对未考虑此类信息或超出此类信息范围使用所造成的后果不承担任何责任。本文档中提到的信息如有更改,恕不另行通知,除非签署协议,否则江苏杰杰将遵守协议。本文档中提供的产品和信息不侵犯专利。江苏杰杰对因使用此类产品和信息而可能侵犯第三方其他权利的行为不承担任何责任。
本文档中提供的信息被认为是准确和可靠的。但是,江苏杰杰微电子有限公司对未考虑此类信息或超出此类信息范围使用所造成的后果不承担任何责任。本文档中提到的信息如有更改,恕不另行通知,除非签署协议,否则江苏杰杰将遵守协议。本文档中提供的产品和信息不侵犯专利。江苏杰杰对因使用此类产品和信息而可能侵犯第三方其他权利的行为不承担任何责任。
本文档中提供的信息被认为是准确和可靠的。但是,江苏杰杰微电子有限公司对未考虑此类信息或超出此类信息范围使用所造成的后果不承担任何责任。本文档中提到的信息如有更改,恕不另行通知,除非签署协议,否则江苏杰杰将遵守协议。本文档中提供的产品和信息不侵犯专利。江苏杰杰对因使用此类产品和信息而可能侵犯第三方其他权利的行为不承担任何责任。
硅IGBT的开发一直以更高的功率效率和更高的当前处理能力来设计优化和降低电源转换器系统的成本。在过去的三十年中,通过引入沟槽几何学[1],野外停机(FS)技术[2]和注射增强(IE)效应来取得重大进展。但是,在州绩效,切换频率和长期可靠性方面的进一步改善变得难以实现。这是因为动态雪崩(DA)在限制高电流密度操作能力方面起着关键因素[4-7]。要打破常规IGBT的基本限制,并保持与宽带差距(WBG)功率设备的竞争力,必须以可靠的方式实施创新的硅技术,以实现自由运营和显着降低功率损失,同时与WBG替代品相比保持硅的成本竞争力。这是因为无DA的操作可以降低门电阻,从而降低开关损耗并提高可靠性。沟槽簇的IGBT(TCIGBT)是唯一到目前为止已实验证明的无DA的解决方案[7-11]。其自晶状功能和PMOS操作可有效地管理沟槽门下的峰值电场分布。此外,即使将NPT-TCIGBT与FS-IGBT进行比较,固有的晶闸管操作也会提供更低的状态损失[10,11]。因此,TCIGBT提供了一种高度有希望的解决方案,可以超越当前IGBT技术的限制。
摘要。栅极氧化物和碳化硅 (SiC) 之间的界面对 SiC MOSFET 的性能和可靠性有很大影响,因此需要特别注意。为了减少界面处的电荷捕获,通常采用后氧化退火 (POA)。然而,这些退火不仅影响器件性能,例如迁移率和导通电阻,还影响栅极氧化物的可靠性。我们研究了 NH3 退火 4H-SiC 沟槽 MOSFET 测试结构的氧化物隧穿机制,并将其与接受 NO POA 的器件进行比较。我们发现,NH3 退火 MOS 结构存在 3 种不同的机制,即陷阱辅助隧穿 (TAT)、Fowler-Nordheim (FN) 隧穿和电荷捕获,而在 NO 退火器件中仅观察到 FN 隧穿。隧穿势垒表明,有效活化能为 382 meV 的陷阱能级可实现 TAT。
a 波兰克拉科夫 AGH 大学。b 西班牙巴塞罗那国立微电子中心 (CNM)。c 苏格兰格拉斯哥大学。d 苏格兰爱丁堡大学。e 美光半导体有限公司,英国兰辛。f 英国曼彻斯特大学。g 苏格兰爱丁堡微电子中心,苏格兰。
在所谓的超级地震中进行灾难,就像2011年发生在毁灭性的tohoku-oki地震期间。与地震相关的海底变形和摇动可以重新探测大量的沉积物和新鲜的有机碳,随后通过重力流动到哈达尔沟槽盆地的末端水槽中。为了研究巨型地震的长期历史并研究地震在超深水环境中的作用,IODP Expedition 386团队已收集并分析了58个从孔中取出的58个沉积物核心,该孔在500千万千万千千万英寸的500千万英寸井下的15个地点深37.82米处。“这些操作探险成就取得了成功的深度提交采样,在海平面以下7445-8023 m之间的水深下水,在50多年的科学海洋钻井和训练中创下了两个新记录。”“我们已经在8023米的水深下方的最深的水位位置,并从海拔8060.74米处恢复了最深的亚海水平样品”。