通讯作者电子邮件 ID:mailofpmani@yahoo.com 摘要:防洪系统的结构措施是为通过洪水的超限概率定义的特定防护程度而设计的。然而,主要蓄水结构的失效会给下游洪泛区带来超出特定防护程度的额外洪水风险。因此,监管机构在评估下游河段的综合洪水风险时,将大坝失效纳入安全指南。因此,溃坝分析评估了大坝失效后可能因蓄水而引发的洪水(无论是否有气象条件下产生的洪水)对下游河段的安全水平。综合溃坝分析包括对洪水范围和强度的估计、洪水发生时间和洪水持续时间。具体的防洪措施包括为下游河段制定应急行动计划,计算可用的预警时间和疏散计划。应急行动计划应提前为规划人员、当地行政人员甚至可能受影响的人口所知。公众风险认知有助于制定防洪计划和有效的风险管理策略。溃坝分析本质上是一个两步程序,(i)模拟坝段溃坝的发展情况并计算溃坝(洪水)流量,(ii)计算下游河段的洪水水位以计算各种洪水属性。本文报告了位于小喜马拉雅山库马盎地区北阿坎德邦的 Dhauliganga 大坝的溃坝分析。研究了混凝土面板堆石坝溃坝导致的各种洪水情景,并估算了洪水淹没、发生时间等。使用测量的河流横截面和使用海得拉巴 NRSC 提供的 CARTODEM 生成的研究区域 10 米分辨率 DEM,在 MIKE 11 中开发了约 30 公里河段的水力模型。模拟了三种洪水情况;(i)由于河流中的 PMF 导致溃坝情况而发生的洪水; (ii) 由于 PMF 导致的洪水,但大坝没有溃坝;以及 (iii) 晴天溃坝条件(水库满时,大坝溃坝,但流入量正常)。观察到,在大坝溃坝的临界情况下,洪峰洪水从坝址到下游约 20 公里处的 Dharchula 主要定居点区的行进时间为 42 分钟。对其他重要位置的最高洪水水位和洪峰洪水行进时间进行了估计。然而,分析表明,即使在最严重的洪水条件下,也没有定居点 / 村庄地区被淹没。通过将淹没地图叠加在 Google Earth 上,可以估计各种洪水情况下的洪水灾害范围,以详细描述被淹没的区域和可能受影响的基础设施。关键词:溃坝分析、MIKE 11、洪水泛滥、洪水灾害、EAP 1. 简介 保护公众生命和财产免受溃坝后果的影响非常重要,因为大量人口和基础设施容易受到溃坝灾害的影响。事先评估溃坝造成的洪水范围、强度和时间/
赞比西河管理局(管理局)于 1987 年 10 月 1 日根据赞比亚和津巴布韦议会的平行立法成立为法人团体,此前中非电力公司根据《赞比西河管理局法案》(分别为第 467 章和第 20:23 章)进行了重组。管理局由赞比亚共和国和津巴布韦共和国政府以相等比例共同拥有,并负责管理卡里巴综合体和赞比西河河段(从赞比亚的卡宗古拉到卢安瓜,从津巴布韦的卡宗古拉到卡尼耶姆巴),该河段是两个缔约国之间的共同边界的一部分。 2.0 背景 该机构拥有经批准的 183 名员工,在两个 (2) 个不同的国家(即赞比亚和津巴布韦)(“缔约国”)和三个 (3) 个地点(即赞比亚的卢萨卡、津巴布韦的卡里巴和哈拉雷)开展业务,此外还设有十三个 (13) 个遥测测量站。
该计划是在 2018 年 5 月至 2019 年 12 月期间举行的一系列委员会会议上反复制定的。参加这些会议的 DEC 工作人员名单在致谢中。该过程始于对 2017 年秋季收到的公众意见的评估和总结(Henson 2018)。我们从垂钓者那里听说,鳟鱼溪流垂钓不是一种标准化的体验,无法用捕获率等通用指标充分体现。相反,垂钓者将鳟鱼溪流垂钓描述为不同垂钓体验的综合体,通常希望获得多种垂钓体验。垂钓者对野生和放养鳟鱼渔业进行了明确的区分,并肯定自给自足的鳟鱼具有特殊的价值。在放养河段,垂钓者希望看到孵化场鳟鱼提供的捕鱼机会在季节长度和河段内的空间分布方面得到延长。最后,钓鱼者强调,除了预期对良好的钓鱼体验的贡献外,健康、未受损害、高质量的溪流栖息地对他们的钓鱼体验本身也很重要。
密西西比河及其支流防洪工程的四大要素是:堤坝,用于控制和分流洪水;泄洪道,用于疏导密西西比河关键河段的过量洪水;河道改善与稳定,用于稳定河道以提供高效的航运路线,提高河流的洪水承载能力,保护堤坝系统;支流盆地改善,用于主要排水系统和防洪,如水坝和水库、抽水站、辅助水渠等。
HEC RAS 由水文工程中心 (HEC) 开发,该中心隶属于美国陆军工程兵团水资源研究所 (IWR)。该软件可以模拟不同洪水条件下河流和水道的流量 (USACE, 2016)。模拟可以在一维 (1D)、二维 (2D) 或一维或二维组合中进行。它可以处理单一河段、树枝状或全网络河流中稳定或逐渐变化的稳定流水面剖面。HEC RAS 还可以处理一维、二维或一维-二维组合环境中的非稳定流模拟。在非稳定环境中,可以使用存储区、二维流动区域和河段之间的水力连接来建模。HEC RAS 的另一个特点是能够对长期冲刷和沉积造成的沉积物/可移动边界进行建模。HEC RAS 的最后一个特点是能够对河流质量分析进行建模。它可以对藻类、溶解氧等许多水质成分进行详细的温度分析和传输 (USACE, 2016) 在本研究中使用了 1D 非稳定流模拟。河流长度超过 500 公里,横截面的最大宽度接近 150 公里(包括洪泛平原)。7.3.1.几何数据几何数据是从 ArcGIS 创建的 .sdf 格式文件导入的。它包含节点名称、河段长度、站点高程数据、河岸站、曼宁系数和 GIS 切线。横截面之间的原始距离大约为 5 公里,并根据 HEC RAS 的一些技术论坛的建议将其插值到 500 米的距离以防止负流。大多数横截面有超过 500 个点,但 HEC RAS 不接受这些点。每个横截面的最大点数限制为 500 个点。为了解决这个问题,我们通过几何工具横截面点过滤器过滤了横截面点。我们对横截面进行了一些进一步的调整,例如起始高程低于河道最低高程和河岸位置。下图显示了编辑后的几何数据。
大湖沿岸恢复力研究,伊利诺伊州、印第安纳州、密苏里州、明尼苏达州、纽约州、俄亥俄州、宾夕法尼亚州和威斯康星州 500 500 伊利诺伊河 519 福克斯河大坝修复,伊利诺伊州 250 密西西比河在密苏里河和明尼阿波利斯之间的河段(MVR 700 I\ 部分),伊利诺伊州 上德斯普兰斯河洪水和修复,伊利诺伊州 1,525
水道河床上颗粒的大小对于鲑鱼栖息地的可能用途起着重要作用。最近,已经开发出新的分析方法,用于从高分辨率航空图像中绘制基板尺寸。该项目的目标是使用 Carbonneau 等人开发的方法。 (2004) 绘制了圣玛格丽特河(萨格奈)东北支流一段大西洋鲑鱼的栖息地地图,该河段正在进行鲑鱼繁殖易位计划。 2014年夏天,利用Dugdale等人开发的直升机机载成像系统,在低水位期间获取了地面分辨率为2.4至3.3厘米的河流航空图像。 (2013)并配备了高分辨率光学相机。就在飞行之前,在河流的 4 个代表性河段的河床裸露部分和淹没部分获取了底物的地理参考地面照片,以作为根据航空图像估算底物的方法的校准。使用免费软件 BASEGRAIN 分析这些照片,以测量每张图像上的粒度分布并计算 D 16、D 50 和 D 84。然后分析航空图像以计算不同大小的分析窗口内的像素亮度熵(
下克拉马斯项目 (FERC 编号 14803) 包括克拉马斯河上的四个水力发电开发项目:JC Boyle、Copco No. 1、Copco No. 2 和 Iron Gate(图 1-1)。具体来说,JC Boyle 大坝和 Iron Gate 大坝之间的河段称为水力发电河段。2016 年 9 月,Renewal Corporation 提交了一份重大项目许可证交还申请和项目工程拆除申请,FERC 项目编号 2082-063 和 14803-001(许可证交还)。Renewal Corporation 作为大坝拆除实体提交了许可证交还申请,目的是实施克拉马斯河水力发电解决方案 (KHSA)。2020 年 11 月,Renewal Corporation 提交了其最终退役计划 (DDP),作为其修订后的许可证交还申请 (ALSA) 的附件 A-1 和 A-2。 DDP 是更新公司的综合计划,旨在从物理上移除该项目并实现自由流动的条件和自愿的鱼类通道、场地修复和恢复以及避免对下游产生不利影响(拟议行动)。2022 年 11 月,委员会批准了 ALSA 并发布了许可证移交令 (LSO),批准设施移除和栖息地恢复。
风能 • 陆基 • 海上 • 分布式太阳能 • 公用事业光伏 (PV) • 商用和工业光伏 • 住宅光伏 • 公用事业光伏加电池 • 聚光太阳能发电 (CSP) 水电 • 无动力水坝 (NPD) • 新河段开发 (NSD) • 抽水蓄能水电 地热(闪速和二元) • 热液 • 近场增强型地热系统 (EGS) • 深层 EGS 存储 • 公用事业规模 • 商业规模 • 住宅
风能 • 陆基 • 海上 • 全新:分布式太阳能 • 公用事业光伏 (PV) • 商用和工业光伏 • 住宅光伏 • 公用事业光伏加电池 • 聚光太阳能发电 (CSP) 水电 • 无动力水坝 (NPD) • 新河段开发 (NSD) • 抽水蓄能水电(全新:资本支出)地热(闪热和二元) • 热液 • 近场增强型地热系统 (EGS) • 深层 EGS 存储 • 公用事业规模 • 商业规模 • 住宅