病毒调节微生物群落的多样性和活性。然而,对它们在流细菌生物膜群落结构中的作用知之甚少。在这里,我们介绍了有关瑞士三种横向冰山的各种流病毒群落多样性和组成的见解。冰期流的特征是极端的环境条件,包括近冻结温度和超寡聚营养。这些条件选择了几个但适应良好的细菌进化枝,这些进化枝在生物膜群落中占主导地位,并通过微生物菌株占据了壁ni。我们使用元基因组测序揭示了这些流中各种生物膜病毒组合。在不同的流量和流中,病毒群落组成与细菌宿主的组成紧密结合,细菌宿主的宿主是由一般高的宿主特定城市强调的。将噬菌体相互作用的预测与辅助代谢基因(AMG)相结合,我们确定了通过感染微生变化枝成员的噬菌体共享的特定AMG。我们的工作为更好地理解细菌之间的复杂相互作用和噬菌体在一般情况下的噬菌体和噬菌体之间提供了一步。
拥有精确有效的监测系统来评估河流状态的重要性在于其预测和应对可能导致洪水和溢出的极端天气事件的能力。与水有关的灾难,例如山洪洪水,可能会对基础设施,经济以及最重要的是对人口安全的影响。因此,高级河流识别系统的实施成为SIT(首字母或首字母缩写)的战略优先事项。本报告旨在概述通过图像在河流识别领域使用的最新技术,方法和方法。通过对专业文献的审查,将探索使用计算机视觉,遥感,人工智能以及其他相关学科的河流检测和跟踪学科的最新进展。此外,将解决在其他地区和组织中实施类似系统的成功案例和最佳实践。最终,本文将成为为其河流识别项目寻找最合适和最有效的解决方案的起点。此处收集的信息将为理解基于图像的河流监测系统的计划和执行中必须考虑的可能性,挑战和关键注意事项提供稳固的基础,以确保人口和自然环境的安全和福祉。这些要素来自各种信息和经验的来源。基于图像的河流识别系统的实施项目测量河床并确定溢流的风险是在必须全面考虑几个要素的情况下设定的。
研究人员使用高分辨率MERRA-2数据以及统计方法来评估耦合模型对比度项目(CMIP5和CMIP6)的性能,以模拟降水,最高温度(TMAX)和最低温度(TMIN)。他们应用了双线性插值将数据集标准化为0.25°×0.25°的分辨率。对于未来的气候预测,除了CMIP5方案外,它们还融合了CMIP6场景。根据Panj River Basin的独特地形特征的适用性选择了总共八个通用循环模型。
摘要 - 不同的微生物群存在于雨林和红树林植被土壤类型中,但对其人口和多样性的了解不多,因此,进行了这项研究,以评估和比较微生物的季节性变化,以及在尼日利亚州河流州哈科尔特港的两种植被土壤中的植被类型的多样性。在干燥和雨季中收集了顶部土壤(0-15cm)和地下土壤(15-30厘米)的样品,并进行标准分析。cow豆在栽培之前和之后的不同土壤和微生物种群中也进行了种植。结果表明,在干旱季节,红树林和雨林植被类型的微生物种群比其他季节都显着(P≤0.05)。微生物种群的范围是:总杂质细菌7.8-25.0 x105cfu/g和6.6-22.1 x105cfu/g;总核真菌2.0-5.4 x103cfu/g和0.3-0.9 x 103 cfu/g;放线菌0.2-3.7x103cfu/g和0.2-0.9x103cfu/g;硝化细菌0.2-6.9 x102 cfu/g和0.2-5.0x102cfu/g;氮固定细菌(0.2-1.3x102cfu/g和0.2-1.5x102cfu/g)分别用于雨林和红树林土壤。在所有季节中,总共分离出33种细菌,2种放线菌和15种真菌。芽孢杆菌是最主要的细菌,而曲霉菌是两种植被类型和所有季节中最为主要的真菌。牛豆种植和季节性变化后,不同土壤中的微生物种群增加了微生物多样性和种群。索引术语 - 植被,土壤,特征,细菌,真菌
fi gu u r e 1来自瓦尔河的两亲脚的耐热性。(a)我们研究了Amphipods D. Villosus和E. trichiatus,这都是目前在西欧河流中发现的入侵物种,包括荷兰的瓦尔(Waal),包括荷兰(图;照片来源:弗兰克·柯拉斯(Frank Collas))。收集位点距离该位置为0.98 km(N51°51'22'',E5°52'55'')。(b,c)热死亡时间曲线,显示了来自跨因素实验的不同温度下的绒毛乳杆菌的存活时间。经验测量以灰色的24种不同组合和灰色的测量条件组合的个人回归显示,分别为蓝色和红色的冷和温暖的动物的平均存活率,以及(b)Normoxia(pO 2 = 20 kpa)和(c)和(c)低氧(PO 2 po 2 unomogia(po 2 = 20 kpa))。请注意,生存时间是log 10转化。
摘要:RSA是最广泛采用的公钥加密算法之一,它通过利用模块化指数和大质量分解的数学属性来确保安全通信。但是,其计算复杂性和高资源要求对实时和高速应用构成重大挑战。本文通过提出针对RSA加密和解密的优化非常大规模的集成(VLSI)设计来解决这些挑战,重点是加速模块化凸起过程,这是RSA计算的核心。设计结合了蒙哥马利模块化乘法,以消除时间密集型的分裂操作,从而在模块化算术域中有效地计算。它进一步整合了诸如管道,并行处理和随身携带加盖之类的技术,以减少关键路径延迟并增强吞吐量。模块化启动是使用正方形和多种方法的可扩展迭代方法实现的,该方法针对硬件效率进行了优化。硬件原型是使用FPGA和ASIC平台合成和测试的,在速度,区域和功耗方面表现出卓越的性能。所提出的体系结构在保持安全性和可扩展性的同时,可以实现高速操作,使其适用于实时的加密应用程序,例如安全通信,数字签名和身份验证系统。与现有实现的比较分析突出了重大改进,将提出的设计作为下一代安全硬件加速器的可行解决方案。关键字:RSA算法,Verilog,FPGA
Muhammad Arif bin jalil物理系,马来西亚大学科学学院,81310 Johor Bahru,Johor,Johor,Malaysia,马来西亚摘要:一种在可见的和紫外线的贵族 - 基因激光器。氩离子激光器的可见和紫外线波长分别为408.9至686.1 nm和275至363.8 nm。1964年,威廉·布里奇斯(William Bridges)创建了氩离子激光。因为它们是由贵重气氩的电离物种制成的,因此这些连续波(CW)激光也称为离子激光器。氩离子的能级过渡在氩离子激光器的激光操作中起作用。氩离子激光器可能在可见光谱中产生多达100 W的能量。[28]关键字:激光,能源,增益培养基,吸收,自发发射,刺激发射,氩离子激光。
为此,主要思想是使用“ Tuwmodel”的概念水文模型的“新版本”来说明水和洪水传播的巴辛间传播(从上游流域到下游流域),通过实施基于NASH-Cascade模块的引入新路由程序。在测量站点使用不同的校准策略来估计最佳模型参数。然后将基于机器学习的区域化方法(Hydropass)应用于在Ungaiged地点推断模型参数以进行水文流量预测。
摘要:医院内的医疗活动导致抗生素的大量消耗,从而导致抗生素残留物的排泄率很高。当这些抗生素被人体服用时,它们不会被人体完全吸收,通常会与受感染的人类患者的生物废物一起排入环境中。医院的大量用水和医疗机构废水中的药物影响促进了抗生素耐药细菌 (ARB) 和抗生素耐药基因 (ARG) 在环境中的出现和传播。医院废水可能在各种生态系统中双重参与抗生素分子和多重耐药细菌的传播。本综述的目的是通过评估环境(水生环境;河流)中这些医院废水中的抗生素浓度和抗生素耐药细菌的多样性来表征医院废水,以及清点医院废水和环境中存在的细菌和携带抗生素耐药性的细菌。
工业排放指令(IED)于2014年1月7日生效,要求实施所有相关最佳技术(BAT)结论,如委员会实施决定所述。废物管理活动的时间表包括恢复每天超过75吨的非危害废物(如果唯一的废物处理活动是厌氧消化)涉及生物处理,但排除了城市废水处理法规(UWWTR)的活动。然而,英国环境调节器得出结论,废物污水污泥的生物处理不是UWWTR所涵盖的活动,因此在IED范围内。