气候变化正在极大地改变加利福尼亚的水资源,从而导致天气和水文学的变化更大。通过加强del,积雪和融雪的延伸,延长的干旱正在减少,季节性径流模式正在变化。水管理的所有部门都面临气候变化带来的风险增加。在圣华金河谷,随着气候变化的态度,长期的水管理挑战正在加剧。在过去的十年中,水和洪水经理都经历了两种极端的经历 - 两年创纪录的潮湿年份,最干燥的三年和四年干旱记录下来。随着气候继续变暖,干旱和洪水的发生和严重程度可能会增加。即使在当前的气候条件下,包括气候变化加剧的地下水透支,梅塞德河流域(默塞德流域)即使在当前的气候条件下,也已经面临慢性水管理挑战。孤立的计划和分析方法,专注于单个水管理部门,不足以应对加利福尼亚州的21世纪水管理挑战,圣华金河谷(San Joaquin Valley)以及本研究的目的,默塞德(Merced)流域。应对这些挑战需要灵活的,多收益的协作解决方案,以改善洪水,供水和生态系统的弹性。
摘要。使用机器学习方法悬挂的沉积物估计。河流中的悬浮沉积物对于有效使用水资源和液压结构很重要。在这项研究中,使用传统的多线性回归(MLR),机器学习方法(例如支持向量机(SVM)(SVM)和M5决策树(M5T)估算了河流的悬浮沉积物负载。每日流,每日最高和最低水温以及河流中悬浮沉积物浓度的数据都用作所有模型中的输入数据,以预测每日悬浮的沉积物排放。根据统计方法评估所有方法的性能。确定系数(R 2),均方根误差(RMSE)和平均绝对误差(MAE)用作比较标准。总体而言,机器学习方法更好地预测了悬浮的沉积物排放。关键字:沉积物放电,预测,线性回归,支持向量机,M5树。简介
摘要:大规模的水文建模是河流水文学中的一种新兴方法,尤其是在有限的可用数据的地区。这项研究重点是评估希腊五个跨界河流的两个知名大规模水文模型,即电子型和lisflood的性能。为此,将两种模型的河流插座上的排放时间序列与观察到的数据集进行了比较。比较是使用确定的确定系数,偏差百分比,nash – utcliffe效率,根平方误差和kling-gupta效率进行比较。随后,水文模型的时间序列分别通过缩放因子,线性回归,增量变化和分数映射方法纠正。然后使用相同的统计措施重新评估输出对观测值进行重新评估。结果表明,两个大规模的水文模型都没有持续优于另一个模型,因为一个模型在某些盆地中的表现更好,而另一个模型在其余情况下表现出色。偏差校正过程将线性回归和分位数映射确定为案例研究盆地最合适的方法。此外,该研究还评估了上游水域对河流预算的影响。该研究强调了大型模型在跨界水文学中的重要性,它在全球范围内对其在任何河流盆地中的适用性提出了一种方法论方法,并强调了产出在国际水域合作管理中的有用性。
基于材料和方法观察数据集1月1个月度流动时间序列(根据每日记录计算)是从2个全球流量指数和元数据存档(GSIM)获得的(18,47)。全球径流数据3中心(48)(GRDC)数据库,以每月规模提供河流流量,该数据库被4 GSIM排除,用作补充数据集。要计算具有最小偏差的RF,制定了两个5个选择标准:i)研究期限从1965年到2014年,以确保6个足够的站点进行空间覆盖范围的足够分析; ii)每月排放量仅在每年8个月可用10个月或更长时间的数据时才能计算年度季节性指数。鉴于气候迅速变化,我们通过将五个定期更新的河流流量数据集(表S3)从国民到2017 - 2019年全球水平结合在一起,扩展了分析,以包括最近的9年。拥有国家或11个大陆数据库的国家/地区的所有GRDC站(例如USGS数据)被替换,以避免重复的时间12系列河流。13为了获得全球范围的覆盖范围,使用了最近发表的全球栅格每月14个径流(Grun)数据集的重建(19)。Grun是从GSIM的原地15个月度河流流量观测到的,其空间分辨率为0.5°,涵盖了1902年至2014年的16个时期(19)。它是通过训练基于全球土壤湿度的降水和温度观察的机器学习算法的17阶段(GSWP3)数据集(19)的训练,因此,Grun无法明确考虑19的效果。S17)。观察到来自GRDC数据集的每月河流排放,并从部门间影响模型对比21项目(ISIMIP2A)重建的2A阶段的20个多模型模拟用于验证(19)。在新出版的G-Run合奏中的另外四个成员22在1965 - 2014年重叠,用来23个说明了径流上大气强迫数据集的不确定性,包括径流24次被CRUTSV4.04,GSWP3-W5E5,GSW3-W5E5,GSWP3-EEMBI和PGFFV3 25(49)强迫。与G-Run合奏的AE趋势的空间模式与Grun 26支持使用Grun进行气候变化检测和归因分析,而27进一步证实了我们结果的鲁棒性(图总而言之,原位观察结果28结合了气候变化的影响(包括ACC,自然强迫和自然29气候变化)和人类活动(例如储层,人类水管理和30种土地利用变化,缩写为HWLU)。相反,Grun和G-Run Ensemble仅31个说明了气候变化的影响。为了排除储层对原位观测值的RFS趋势的空间32模式的影响,水合物subbasin单元(PFAFSTETETER 33级别12)(50)与Grill等人提供的调节程度(DOR)集成在一起。(51)至34个将量规站区分为受储层影响(DOR> 0)的量规站,以及由储层(dor = 0)受到影响的35个。subbasin单位水平的DOR通过在河流范围内选择DOR的36个最大值来表示。使用了1965年至2014年期间的5×5°分辨率的crutem5数据集的平均空气温度数据(55)。有6,150个站点从储层影响中确定为37个,而3,914个站位于sibbasins或38个水库的下游(有49个车站由于在39个岛屿上的存在,而另外7个缺乏DOR信息的车站,因此位于水力发生范围外的49个站点)。在1979 - 2000年的平均降雪与降水量41的比例(52)时,全球范围内的40个降雪区域(52)都在全球范围内确定,其中包含0.5°的全球42降水量和降雪通量。2014年降雪时间序列的时间序列是根据全日制44覆盖率的第五代大气再分析(ERA5)计算得出的(53)。为排除降水季节性,观察到的每月栅格降水45来自全球降水气候中心(GPCC)(54)的数据以2.5×46 2.5°的分辨率在1965-2014时以每月量表为单位。48
摘要:河流生态系统已经适应了整个季节的自然放电变化。14然而,证据表明气候变化已经影响了15河流量季节性的幅度,仅限于本地研究,主要集中于平均或极端16个流量的变化。这项研究介绍了将分配熵用作可靠的措施来评估整个季节的17流量不均匀性,从而实现了全球分析。我们发现,在18个长期河流测量站中,约有21%的季节性流量分布发生了重大变化,但其中三分之二与年平均排放趋势无关。通过将20个数据驱动的径流重建与最先进的水文模拟相结合,我们确定了北部高纬度地区(高于50°N)的河流流量季节性的21个可分离弱化,这是一种与人为气候强迫直接相关的现象。23
科学研究和分析是环境署一切工作的基础。它帮助我们了解和有效管理环境。我们的专家与领先的科学组织、大学和环境、食品和乡村事务部集团的其他部门合作,为解决我们现在和未来面临的环境问题提供最佳知识。我们的科学工作以摘要和报告的形式出版,供所有人免费查阅。本报告是环境署首席科学家小组委托进行的研究的成果。您可以在 https://www.gov.uk/government/organisations/environment-agency/about/research 上了解有关我们当前科学计划的更多信息。如果您对本报告或环境署的其他科学工作有任何意见或问题,请联系 research@environment-agency.gov.uk。
河口,沿海和近岸地区是连接陆地和海洋生态系统的关键区域。自然过程和强大的人为活性都会影响这些区域中的物质转化,能量流以及微生物和矿物质相互作用(Lazar等,2017; Cooke等,2020; Liu等,2020)。微生物群落是包括碳和氮在内的生物地球化学周期的主要动力之一,并且在河口,沿海和近海生态系统的生态平衡调节中起着重要作用(Shiozaki等人,2016年; Sohm等,2016)。由于微生物和生物地球化学周期之间的紧密相互关系,有必要对这些环境中的耦合机制和生态影响进行更深入的探索。这个跨学科的主题旨在了解微生物群落在有机物分解,营养转化和温室气体排放等过程中的作用(Lin and Lin,2022; Zhang等,2023)。通过研究这些关键过程背后的微生物驱动因素,我们可以深入了解河口,沿海和近海生态系统的功能和韧性及其对环境变化的反应。本研究主题中的七种文章涵盖了世界各地的各种环境,从河口和盐沼到海水和氧气最小区域,重点关注微生物社区特征以及相关的碳和氮气循环过程。niu等。本研究主题包括有关微生物分类学和功能性漏洞的研究,可以为微生物驱动的生物地球化学过程提供基本的理解。综合了有关分布模式,组装机制,共汇率关系以及细菌的生态功能的信息
亚利桑那州、加利福尼亚州和内华达州 2024 年 3 月 6 日 尊敬的 Camille Calimlim Touton 专员 垦务局 1849 C Street, NW 华盛顿特区 20240 事由:科罗拉多河流域 2026 年后协调运营的下游流域替代方案 尊敬的 Touton 专员: 下列亚利桑那州、加利福尼亚州和内华达州(下游各州)的州长代表很高兴有机会提交附件替代方案(下游流域替代方案)供垦务局(垦务局)进行分析,作为垦务局《国家环境政策法案》(NEPA)审查的一部分,以采用指导方针和协调的水库管理策略来应对鲍威尔湖和米德湖未来的运营。这些新指南将在 2007 年科罗拉多河下游流域水资源短缺和鲍威尔湖和米德湖协调运营临时指南(2007 年临时指南)于 2026 年到期时生效,如《2026 年后科罗拉多河水库运营范围界定报告》(88 FR 72535,2023 年 10 月 20 日)(范围界定报告)中所述。该下游流域替代方案旨在根据范围界定报告,在气候变化导致的广泛潜在未来系统条件下,为科罗拉多河系统及其资源提供可持续管理。自垦务局于 2023 年 6 月发起这项行动以来,科罗拉多河流域各州(流域各州)一直在努力制定一项共识替代方案,如流域各州 2023 年 8 月 15 日的范围界定信中所述。尽管流域各州一致认为,由于气候变化,未来系统可能会出现各种状况,需要为鲍威尔湖和米德湖的运营提供保障,但目前七个流域各州还未能就替代方案达成一致。下流域各州期待与上流域各州以及部落、非政府组织和其他利益相关者进行进一步讨论,以达成共识,同时垦务局将评估替代方案。
• 系统规划 10 评估了汉福德罐区废物回收、处理和处置任务的当前基本实施方法以及五种替代方案。方案 1 和 2 由美国能源部 (DOE) 选定,方案 3 至 6 由华盛顿州生态部 (Ecology) 选定。
摘要尼罗河盆地是非洲第二大盆地,也是具有高气候多样性的地区之一,降水量的差异和水源恶化。由于气候变化影响了世界上大多数氢化气候变量,因此该研究评估了尼罗河盆地选定量表的河流流量和沉积物负荷是否可以归因于气候变化。一种影响归因方法是通过从部门间影响模型对比项目(ISIMIP3A)的影响归因设置中限制了69年(1951- 2019年)使用一组实际和反事实气候强迫数据(1951- 2019年)的基于过程模型的方法。为了阐明气候变化的作用,我们使用非参数Mann-Kendall检验来识别趋势并计算使用事实和反事实气候强迫数据之间的模型设置之间的长期平均年河流流量和沉积物负载模拟的差异。维多利亚湖盆地选定的河站的结果表明,有合理的证据表明河流(两个站点)和沉积物负荷(一个站点)的长期历史增长(一个基本),主要归因于气候变化。相比之下,在蓝尼罗河和主要尼罗河盆地内,在事实气候下的四个选定站点的河流略有下降,这可以归因于气候变化,但造型载荷没有显着变化(一个站点)。这些发现表明,在历史时期,气候变化对河流流量和沉积物负荷的影响的空间差异。