[52] Lin,C.S.,Hsu,C.T.,Yang,L.H.,Lee,L.Y.,Fu,J.Y.,Cheng,Q.W.,Wu,F.H. S.B.和Shih,M.C。 (2018)原生质体技术与CRISPR/CAS9诱变的应用:从单细胞突变检测到突变植物再生。 植物生物技术杂志,16,1295-1310。 https://doi.org/10.1111/pbi.12870和Shih,M.C。(2018)原生质体技术与CRISPR/CAS9诱变的应用:从单细胞突变检测到突变植物再生。植物生物技术杂志,16,1295-1310。 https://doi.org/10.1111/pbi.12870
光纤传感在油气井中的应用。光纤传感有可能彻底改变油气行业的油井和油藏监测。光纤传感器的被动特性、安装成本低廉的潜力以及沿光纤整个长度进行密集分布测量的可能性,都为油气行业带来了诸多好处。安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和处理能力(将这些测量结果转化为有价值的信息)是任何传感系统的关键要素。基础由井中的合适光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。低成本、坚固耐用的询问单元是实现基于 FBG 的传感系统成本效益的关键因素之一。本文介绍了用于高温沙漠环境的此类询问单元的成功开发(第 3 章)。这一发展旨在促进低成本商业化实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 (DAS) 是一种完全分布式传感技术,它利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以解释为在整个光纤中实现准麦克风。DAS 近来备受关注,因为它在井下监测(例如压裂监测、流量监测)以及地球物理监测中具有潜在应用。本论文以地球物理应用为重点,描述了合适询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要提高光纤传感电缆对垂直于其轴向方向的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。然而,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,本论文阐述了一种新方法的开发:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保证延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以在井下环境中组合使用。由此产生的大量沿光纤连续的时间和距离测量为石油和天然气行业的稳健井和油藏监测提供了独特的机会。
完整作者列表: Shah, Najam Ul Hassan;亚利桑那州立大学,物质、运输和能源工程学院;塔克西拉工程技术大学,机械工程系 Kong, Wilson;亚利桑那州立大学,物质、运输和能源工程学院 Casey, Nathan;亚利桑那州立大学,物质、运输和能源工程学院 Kanetkar, Shreyas;亚利桑那州立大学,物质、运输和能源工程学院 Wang, Robert;亚利桑那州立大学,物质、运输和能源工程学院 Rykaczewski, Konrad;亚利桑那州立大学,物质、运输和能源工程学院
(1) 设备性能根据 ISO 1217,第 3 版,附件 C-1996 测量 参考条件: - 绝对入口压力 1 bar (14.5 psi) - 进气温度 20°C (68°F) 在以下工作压力下: - 工作条件下最大压力 7 bar。压力 7.5 bar - 工作条件下最大压力 8 bar。压力 8.6 bar
氧化仅发生在暴露于空气的液体表面上,因此,薄膜暴露比变压器水箱中的液体更为重要。建议最大程度地减少天然酯薄膜表面的时间和温度,包括空气,包括未座的核心和线圈,散热器,热交换器,软管,配件等。例如,如果将其表面暴露于氧气中,则可能会降低纤维素表面的蠕变介电介电强度,从而导致足够的时间引起聚合。不同类型的天然酯制剂可以根据基本油的类型以及氧化抑制剂的类型和数量具有不同的建议空气暴露时间限制。
光纤传感在油气井中的应用。光纤传感有可能彻底改变石油和天然气行业的油井和油藏监测。光纤传感器的被动特性、经济高效的安装潜力以及沿光纤整个长度进行密集分布测量的可能性带来了诸多好处。使用安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和将这些测量结果转化为有价值信息的处理能力是任何传感系统的关键要素。基础由井中合适的光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。实现具有成本效益的基于 FBG 的传感系统的关键因素之一是低成本且坚固的询问装置。介绍了用于高温沙漠环境的此类询问装置的成功开发(第 3 章)。这项开发旨在促进商业低成本实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 ( DAS ) 是一种完全分布式传感技术,利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以被解释为在整个光纤中实现准麦克风。DAS 最近受到广泛关注,因为它在井下监测中具有潜在应用,例如压裂监测、流量监测以及地球物理监测。本论文以地球物理应用为重点,描述了合适的询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要增强光纤传感电缆对垂直于其轴向方向撞击的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。但是,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,但本论文介绍了一种新方法的发展:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保障延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以组合在井下环境中。由此产生的沿光纤在时间和距离上连续的大量测量结果为石油和天然气行业的井和油藏监测提供了独特的机会。
碳钢腐蚀是由于金属和周围物质之间的化学反应而发生的。腐蚀可以使用硅酸盐的腐蚀抑制剂抑制。以二氧化硅形式的棕榈油壳提取物可以用作ST-37碳钢中的腐蚀抑制剂,浸泡时间为4、8和12天,在水上,海水和乙酸中为25%。施加到钢的抑制剂浓度的变化为10 ppm,20 ppm,30 ppm,40 ppm,并且在每种培养基中作为树脂硬质(RH)粘合剂。测试腐蚀速率是使用减肥方法确定的,并将抑制的有效性用作对照。腐蚀速率增加取决于样品中的体重减轻量。用FTIR和XRF进行硅酸盐结果的表征。结果表明,获得的硅酸盐产量为76.99%。ftir结果波数为3466.08 cm -1和2318.44 cm -1,表明存在硅烷醇基团(Si-OH)和Siloxsan(Si-O-SI),并表明基于98.01%的XRF结果,预期有硅酸盐化合物和硅水平。30 ppm的浓度是在蒸馏水和海水浸泡培养基中获得的最佳抑制剂浓度。浓度为20 ppm是在25%乙酸浸泡培养基中获得的最佳抑制剂浓度。在30 ppm抑制剂浓度的水上培养基中,抑制效率的最大水平是在浸泡时间为12天的情况下获得的。关键字:贝壳,抑制剂,棕榈,硅酸盐,ST-37治疗后ST-37碳钢的SEM表征显示,没有抑制作用的碳钢表明,表面腐蚀的腐蚀性超过碳钢并具有抑制作用。
摘要Rapeseed是全球重要性的作物,但有必要扩大可用于解决育种目标的遗传多样性。受基因组支持支持的辐射诱变有可能取代基因组敲除和拷贝数增加的基因组编辑,但是缺乏对放射治疗的分子结果的详细知识。为了解决这个问题,我们制作了一个基因组重新测序的1133 m 2一代菜籽植物的面板,并分析了大规模缺失,单核苷酸变体和小插入 - 影响基因开放式阅读框架的缺失变体。我们表明,高辐射剂量(2000 Gy)是耐受性的,γ辐射和快速中子辐射具有相似的影响,并且从某些植物的基因组中删除的片段被其兄弟姐妹遗传为其他副本,从而使基因剂量减少。与具有较大基因组的物种相关性,我们表明,也可以使用转录组重新测序来检测这些大规模影响。为了测试该方法的预测性改变油脂肪酸组成的效用,我们产生了bna.fae1的拷贝数减少和增加的线条,并确认了对灰烬酸含量的预期影响。我们检测并测试了预计将废除BNA.FAD2的21碱基缺失。a5,为此,我们确定了预测的种子油多不饱和脂肪酸含量的降低。我们对辐射诱变的分子作用的提高理解将是基因组学主导的方法,以更有效率地将新型遗传变异引入该作物的繁殖,并为预测其他作物提供了一个典范。
和记医疗(中国)有限公司(“和记医疗”)今天宣布,已在中国启动 HMPL-306 注册性 II 期临床试验,该试验针对异柠檬酸脱氢酶(“ІDH”)突变 1 或 2 复发/难治性急性髓系白血病(“AML”)患者。第一位患者于 2024 年 5 月 11 日接受了第一剂治疗。HMPL-306 是一种新型的 ІDH1 和 ІDH2 酶双重抑制剂。ІDH1 和 ІDH2 突变被认为是某些血液系统恶性肿瘤、神经胶质瘤和实体瘤的驱动因素,尤其是在 AML 患者中。尽管某些 ІDH 抑制剂已在某些市场获批用于治疗 AML,但细胞质突变体 ІDH1 和线粒体突变体 ІDH2 之间的异构体转换通常会导致对单一 ІDH1 或 ІDH2 抑制剂的获得性耐药性。针对 ІDH1 和 ІDH2 突变可能通过克服这种获得性耐药性为癌症患者提供治疗益处。RAPHAEL 是一项多中心、随机、开放标签、注册性 ІІІ 期临床试验,旨在评估 HMPL-306 作为单药疗法对携带 ІDH1 和/或 ІDH2 突变的复发或难治性 AML 患者的安全性和有效性。将与目前的挽救性化疗方案进行比较,测试主要终点总生存期 (OS) 和次要终点,包括无事件生存期 (EFS) 和完全缓解 (“CR”) 率。公司计划为该注册研究招募约 320 名患者,该研究由北京大学人民医院的首席研究员黄小军教授领导。更多详细信息可在 clinicaltrials.gov 上使用标识符 NCT06387069 找到。该研究是基于一项两阶段开放标签 I 期研究的积极数据进行的,该研究评估了 HMPL-306 在该适应症中的安全性、药代动力学、药效学和疗效( NCT04272957 )。首次人体剂量递增阶段的数据于 2023 年 6 月在欧洲血液学协会大会(“EHA”)上公布。1该研究在 50 多名患者中进行的剂量扩展阶段结果表明,在推荐的 I 期剂量下,CR 率有望达到预期,预计将于 2024 年 6 月的 EHA 大会上公布。