这项研究的目的是利用喷墨打印的多功能性来开发柔性剂量的药物载荷胶片,这些薄膜以数据矩阵模式编码信息,并引入专门针对医疗部门的专业数据矩阵生成器软件。pharma-inks(载有药物的油墨)氢化可的松(HC)是根据其流变特性和药物含量来进行表征的。研究了不同的策略以改善HC溶解度:形成β-环糖化蛋白复合物,基于soluplus®的胶束和使用共溶性系统的策略。软件会自动调整数据矩阵大小并确定要打印的层数。HC含量,发现使用的共溶剂的比例直接影响了药物溶解度,并同时在修饰墨水的粘度和表面张力方面发挥了作用。β-环糊精复合物的形成改善了沉积在每一层中的药物数量。相反,基于胶束的油墨不适合打印。成功准备了含有灵活和低剂量的个性化HC的胶片,并且开发了针对医疗使用的代码生成器软件的开发,为个性化医学安全和可访问性提供了额外的,创新的和革命性的优势。
4D 打印是一个新兴领域,其中 3D 打印技术用于对刺激响应材料进行图案化以创建变形结构,以时间为第四维。然而,目前用于 4D 打印的材料通常较软,在形状变化过程中的弹性模量 (E) 范围为 10 −4 至 10 MPa。这限制了所得结构的可扩展性、驱动应力和承载能力。为了克服这些限制,多尺度异质聚合物复合材料被引入作为一种新型的刚性、热响应 4D 打印材料。这些油墨的 E 比现有的 4D 打印材料高四个数量级,并提供可调节的电导率,可同时实现焦耳加热驱动和自感应功能。利用电控双层作为构建块,设计和打印出一种可变形为 3D 自立式起重机器人的平面几何体,与其他 3D 打印执行器相比,在重量标准化的起重负载和致动应力方面创下了新纪录。此外,该油墨调色板还用于创建和打印平面晶格结构,这些结构可变形为各种自立式复杂 3D 形状。这些贡献被集成到 4D 打印电控多步态爬行机器人晶格结构中,该结构可承载自身重量的 144 倍。
(或溶剂混合物),可以进一步加工成可打印或可涂层的墨水。这些悬浮液的行为通常由Derjaguin – landau – verwey -overbeek(DLVO)理论描述,[3]暗示纳米片在悬浮液中的浓度具有上限,其上限在悬浮液变为不稳定的上限。[4]然而,高浓度悬浮液(墨水)对于形成渗透的粒子网络是必需的,[5]并满足高通量打印和涂层方法的风湿性要求(例如,高粘度)。无论其浓度如何,悬浮液在热力学上都是不稳定的,并且颗粒倾向于通过聚集来减少其表面能量。[6]为了降低沉积速率,必须最小化溶剂和2D材料之间的表面能量差,[3]将分散培养基的选择限制在溶解性包膜可能不适合子分类处理的一些溶剂上。在传统的墨水配方中,添加剂(例如formantant,粘合剂和流变学修饰符)用于解决上述问题,并将2D物质置换到可打印或可涂层的油墨中。[7-10]例如,需要大浓度的聚合物粘合剂(例如70 mg ml-1乙酸纤维素丁酸酯),以将涂抹油墨的粘度提高到适合筛网打印的水平。[11]由于典型的添加剂会对电子特性产生不利影响(例如,
摘要。柔性、超轻、超薄——印刷电子产品的未来!这项发展的基石是导电油墨和粘合剂,它们将组件和传感器相互连接,并将它们集成到印刷环境中。在此,功能性油墨等先进材料及其在最终设备中的相互作用起着决定性的作用,这些设备可用于各种用途。为此,创建了纳米范围内的各种粒子结构,以实现所需的导电性,同时将导电物质的材料输入保持在尽可能低的水平。由于优异的性能、多功能性、可能的高产量和相关的降低的生产成本,印刷电子产品促进了广泛的应用,并使其大众市场变得触手可及。因此,相关的环境影响以及供应链的安全性预计将在未来变得更加重要。然而,由于大多数流程都处于开发阶段,如果印刷电子产品的开发要与可持续发展目标保持一致,那么在开始生产之前进行前瞻性评估是必不可少的。为了在早期阶段解决未来印刷电子先进材料实施对环境的影响,本贡献在产品和材料开发开始之前就考虑并评估了其可持续影响。为此,我们开发了一个程序,其中的基本方法使开发工程师能够在早期阶段识别热点,并尽早解决和缓解这些热点。这样,明天的循环经济的挑战今天就得到了解决,并且可以避免关键的可持续性陷阱。
• 经过验证的陶瓷等级,在高温高压下保持高介电强度,性能优于玻璃和 PEEK 等聚合物替代品 • 耐恶劣、腐蚀性化学环境 • 密封组件,100% 氦气泄漏测试至 10 -9 mbar l/s • 精密组件,可与子系统和设备进行最佳连接 • 设计专业知识、数字原型设计和模拟能力 • 全面生产能力 • 专有钎焊金属和定制金属化油墨 • 能够钎焊大型组件,否则必须使用劣质粘合剂或机械连接
虽然在各个行业已经很常见,但是印刷电子产品的生产设备仍然有改进的空间来优化制造效率。这种优化的一个重要方面,尤其是在使用金属纳米粒子油墨时,是烧结过程。烧结步骤包括将金属纳米颗粒融合在墨水中,以确保所需的成品电路电阻率低。在此任务中,加热烤箱,NIR发射器和宽带闪光灯是建立的技术,但它们的缺点限制了生产速度或效率。
stemscale TM PSC悬浮培养基,设计用于CGT制造,可实现PSC的大规模培养。天然杀伤(NK)细胞是先天的,细胞毒性的淋巴免疫细胞,可以杀死恶性细胞而无需HLA匹配,并且是同种异体治疗发展的主要重点。nk细胞疗法临床试验表明,有效治疗可能需要〜5x10 6-1x10 8 nk细胞。但诸如捐助者采购和成功扩展之类的要求妨碍了有效产生大量功能性NK细胞的能力。在这里,我们描述了一种产生PSC衍生的NK(墨水)细胞的方法,该方法从CTS-STAMScale悬浮培养物中,使能够以可扩展的培养格式产生高度富集的功能性油墨。PSC在悬浮液中生长,因为使用生长因子鸡尾酒诱导球体,以区分CD34+造血祖细胞,然后在不使用进料细胞的情况下转化为CD56+墨水细胞。CTS TM NK-Xpander TM中墨水细胞的进一步培养导致CD56+CD3-和CD56+CD16+表型的显着富集。这些墨水的细胞溶性通过它们杀死K562癌细胞以及患者来源的3D结肠肿瘤的能力进一步证明了这些墨水。总而言之,CTS茎扫描的使用突出了馈线 - 游离PSC悬浮培养物的潜力,以分为大规模的细胞溶解油墨。
2 佛罗里达国际大学,10555 W Flagler St,EC3442 佛罗里达州迈阿密 33174 jones@fiu.edu 摘要 玻璃料是用于生产混合电路的厚膜电阻器 (TFR) 的主要成分。已经评估了 30 多种具有不同成分的商用无铅玻璃料,以开发一种无铅厚膜电阻器,该电阻器与典型的工业厚膜加工兼容,并且具有与含铅电阻器相当的电气性能。从 33 种候选玻璃组合物中选出了两种用于制备基于 RuO 2 的 TFR 油墨,将其丝网印刷在氧化铝基板上并在 850°C 下烧制。这些电阻器的初步结果表明,当 RuO 2 为 5-15% 时,薄层电阻范围从 400 欧姆每平方 ( Ω / □ ) 到 0.4 兆欧姆每平方 ( M Ω / □ ),热温度系数 (HTCR) 在 ±350ppm/°C 范围内。关键词:无铅,玻璃料,厚膜电阻器,薄层电阻,TCR 1 引言 厚膜电阻器 (TFR) 是一种复合材料,其中导电相嵌入连续玻璃基质中 [1]。它已广泛应用于混合微电子电路 [2-5]。通常,将导电粉末(氧化钌、氧化铱、钌酸铅)与玻璃料混合,与有机载体混合以获得可印刷油墨,将该油墨丝网印刷在氧化铝基板上然后烧成。玻璃料是厚膜电阻器的主要成分之一,大多数市售的 TFR 产品都含有铅硼硅酸盐玻璃,其中氧化铅含量相当甚至占主导地位 [6]。为了减少因电子产品消费和处置增加而对环境造成的负面影响,无铅加工的需求一直很高。开发新型无铅厚膜材料是最受认可的解决方案之一。因此,有各种无铅焊料、导电产品和其他封装产品可供选择,它们具有与含铅产品相当的性能;然而,对于无铅 TFR,仅报告了部分令人满意的成分。M. Prudenziati 等人 [1] 使用七种无铅玻璃制备了基于 RuO 2 的 TFR。结果尚无定论,证明了无数复杂现象,包括脱玻化、氧化铝基板上玻璃的相关渗漏、玻璃基质中导电晶粒的异常分布和相分离。MG Busana 等人 [7] 使用铋酸盐玻璃,声称
先进材料 在我们位于加拿大和欧洲的先进材料工厂中,我们使用各种各样的原材料,例如我们自己的煤焦油蒸馏活动的馏分、石油衍生的焦油和沥青、油和富碳原料,用于该部门的多个生产工艺。我们通过集装箱、火车车厢、卡车、驳船或油轮将这些材料运送到我们的工厂。这些原材料在我们的工厂进一步加工,以生产各种增值的先进材料产品,例如树脂、改性剂、粘合剂、石化中间体和其他工程产品。我们的客户将这些材料用于各个行业和下游工艺,例如用于生产锂离子电池、印刷油墨、涂料和轮胎。