高地棉花(Gossypium hirsutum L.)占全球棉花生产的90%以上,为全球纺织品和油料种子工业提供了天然材料。提高高地棉花产量的一种策略是增加了杂种的采用。然而,棉花的灭绝是非常耗时的,棉花雄性不育的遗传来源受到限制。在这里,我们回顾了已知的植物核男性不育(NMS)的生物化学模式,通常称为植物遗传性不育(GMS),并将其表征为四组:转录调控,剪接,脂肪酸的运输和加工以及糖的运输和加工和加工。我们已经探索了30个单子叶植物(玉米,大米和小麦)和三个双子(拟南芥,大豆和番茄)的30 gms基因的蛋白序列同源性。我们已经分析了单子植物和双子DICOT GMS基因之间的进化关系,以描述这些基因鉴定的相对相似性和相关性。五个是较低的源物种,四种是单子叶植物独有的,五核,在所有物种中有14个高度保守,而另外则有两个。使用此源,我们已经在高地棉质基因组中鉴定了23个潜在的候选基因,用于开发用于杂交棉花育种的新雄性无菌种质。将基于同源性的研究与基因组编辑结合使用可以允许发现和验证GMS基因,这些GMS基因以前在棉花中未观察到多样性,并且可能允许在杂化棉产生中使用理想的雄性无菌突变体。
全球变暖、干旱、洪水和其他极端事件等气候变化的影响对全球作物生产构成了严峻挑战。油菜对油料产业的贡献使其成为国际贸易和农业经济的重要组成部分。这种作物遭受的多种非生物胁迫越来越多,导致农业经济损失,因此,让油菜作物在同时面临多种非生物胁迫时具有生存和维持产量的能力至关重要。为了更好地了解压力感知机制,需要分析多种压力响应基因和其他调控元件(如非编码 RNA)的调控途径。然而,我们对这些途径及其在油菜中的相互作用的理解还远未完成。本综述概述了目前对压力响应基因及其在赋予油菜多种压力耐受性方面的作用的了解。通过组学数据挖掘分析网络串扰现在使得揭示植物压力感知和信号传导所需的潜在复杂性成为可能。本文还讨论了新型生物技术方法,例如无转基因基因组编辑和利用纳米粒子作为基因传递工具。这些方法有助于为开发具有更少监管限制的、能够抵御气候变化的油菜品种提供解决方案。本文还强调了合成生物学通过微调应激调节元件来设计和修改网络的潜在能力,以适应植物对应激的适应。
蓖麻是一种重要的工业不可用的油料种子,印度是世界上最大的蓖麻种子生产国,占全球总施法种子生产的85.02%。印度在国际蓖麻子石油贸易中也占主导地位,因为印度是蓖麻油及其衍生品的领先出口国。中国从印度进口蓖麻油,将其转换为衍生品,并将其作为高增值产品出售。通过将蓖麻油转换为各种衍生物,有很大的范围来提高印度的收入。随着世界变得更加环保,随着自然衍生产品的替代合成产品的替代,蓖麻油基衍生物可能会在全球范围内发现越来越有吸引力的市场。主要的蓖麻产生国家是安得拉邦,古吉拉特邦,卡纳塔克邦,奥里萨邦,拉贾斯坦邦和泰米尔纳德邦。古吉拉特邦是印度最大的印度蓖麻生产国,该国蓖麻总生产总量约为85.09%(2019-20)。古吉拉特邦蓖麻的生产力不仅在印度而且在世界上都是最高的。不仅面积和蓖麻的生产,而且其出口也是不断增加的趋势。但是,蓖麻农业人士面临着农作物种植的问题。农民一直在报告生产和营销限制。据报道,投入成本也增加了,主要是在肥料,农药和水上。因此,有必要对古吉拉特邦的问题,前景和出口潜力有所了解。印度政府农业与农民福利部经济和统计局委托我们中心对“古吉拉特邦的蓖麻耕作:问题,前景和出口潜力”进行一项针对州的特定研究。
研究长期以来与人类生活息息相关。为了谋生,许多专家通过开展各种研究活动为传统研究方法的现代化做出了贡献。在此过程中,从农民到高级研究人员的专业人士通过开发能够耐受或抵抗疾病的植物做出了自己的贡献。人口增长、气候变化和植物疾病对粮食安全产生了毁灭性的影响。特别是,通过生产高产优质作物来增加粮食产量至关重要,这可以确保粮食安全。最近,已经开发了不同的基因编辑技术。这些技术已应用于许多研究领域,其发展为农民带来了经济效益。农杆菌介导和基因枪法是转化植物遗传物质的非常重要的技术。基因组编辑技术是最近才出现的,在植物研究中得到广泛应用,以改善与产量、抗病性和抗旱性相关的基因。例如,锌指核酸酶 (ZFNS)、转录激活因子样效应物核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列系统 (CRISPR/Cas9) 方法现在被研究人员广泛应用,并在提高产量和生产力方面发挥着积极作用。在基因编辑技术中,CRISPR/Cas9 因其易于使用且经济高效而被广泛应用于植物育种计划。在这篇综述中,我们主要关注花生植物,它是一种重要的油料异源四倍体作物。因此,花生基因编辑技术可以提高食用花生油中的油酸含量。因此,本综述广泛探讨了基因组编辑和基因转化技术。
学期 课程编号 课程名称 学分数 专业(9) I APA501 作物生产的现代概念* 3(3+0) I APA502 土壤肥力与养分管理的原则与实践* 3(2+1) I APA503 杂草管理的原则与实践* 3(2+1) 公共课程-PGS(3) I PGS501 图书馆与信息服务 1 (0+1) I PGS 502 技术写作与沟通技巧 1 (0+1) I PGS 503 农业中的知识产权及其管理 1(1+0) 支持课程(4) I ABB 511 应用科学的统计方法 4 (3+1) 总计 16 专业(9) II APA504 水管理的原则与实践* 3(2+1) II APA506 主要谷物与豆类农学 3(2+1) II APA507 油料、纤维与糖料作物农学 3(2+1) 辅修 (6) II APS 501 土壤物理学 3(2+1) II APS 506 土壤生物学与生物化学 3(2+1) 公共课程-PGS (2) II PGS 504 实验室技术基本概念 1 (0+1) II PGS 505 农业研究与研究伦理与农村发展计划 1(1+0) 支持课程 (3) II ABB512 实验设计 3(2+1) 总计 20 主修 (3) III APA 512 旱地农业与流域管理 3 (2+1) 辅修 (2) III APS 510 土壤与植物分析的分析技术和仪器方法 2(0+2) 研讨会 (1) III APA 591 硕士研讨会 1(0+1) 研究 (10) III APA 521 硕士研究10(0+10) 总计 17 研究(20) IV APA 521 硕士研究 20(0+20) 总计 73
扫帚(凤凰和牛ban)的杂草是寄生的,这些杂草是多种二元植物物种的寄生虫,严重损害了世界各地的重要经济作物。在拉贾斯坦邦,芥末田(油料种子)在芥末田(油籽)中的侵染过程鲜为人知。在过去的几年中,拉贾斯坦邦的许多地区都有扫帚污染的芥末田的数量有所增加。进行现场调查,以调查拉贾斯坦邦东北部芥末种植地区的扫帚的发生。在Jhunjhunu(印度拉贾斯坦邦)Nawalgarh地区广泛的扫帚感染的芥末田(27°51'0.00“ N 75°16'12.00” E)中,进行了现场研究。phelipanche aegyptiaca pers。(埃及扫帚)发现了木制木薯田的田地。进行了田间实验,以记录P. aegyptiaca的所有地下和空中生命阶段。在所有访问的地块中,穆坎德加(Mukandgarh)地区在新兴,开花和果实化阶段表现出最高的发病率和严重程度,而纳瓦里(Nawalri)地区在每个阶段的发生率和严重程度最低。芥末酱和质量受到菲利帕奇侵扰的严重影响。在大多数地块中平均有50%的疾病发病率,扫帚的开花和果实阶段是最难控制的,并引起农作物的100%侵扰。没有广泛研究P. aegyptiaca和B. campestris的相互关系,尤其是在拉贾斯坦邦。至今未实现成功控制这种杂草。本研究将有助于了解埃及P. aegyptiaca在B. Campestris上的组织学相互作用(DAS)。这些相互作用肯定会通过确定有关发芽时间和埃及P. aegyptiaca的时间表的最有效控制时间来设计文化和生物控制策略。
在全球范围内,大约80%的耕地中实践了雨养农业,并贡献了世界粮食的60%。在印度,雨养农业占据了净种植区的约50%,在不同的农业生态学中实行,贡献了40%的国家食品篮子和主要的油料籽,棉花,黄麻和相关纤维的占主导地位。在印度,雨养生产对营养谷物和豆类的贡献约为84-87%,棉花为60%和77%,在油籽中为60%的牲畜和40%的人口。在全球范围内,灌溉投资并没有增加导致非洲国家特别是雨养耕种的占主导地位。雨养农业将继续在印度农业中占据着重要地位,以期鉴于其对食品和营养安全的贡献。尽管在增强灌溉面积和灌溉潜力方面取得了长足的进步,但对季风降雨的依赖仍然很高,在印度的农业生产中仍然很高。尽管近年来,雨林区降低到净耕地净区域的46%,但由于他们在同一季节遭受干旱和洪水,因此继续引起政策制定者和管理人员的关注,目睹了极端的降雨事件,造成了对农业社区,社会和政府的重大损失。降雨的空间和时间分布是影响该国雨水生产系统的主要因素之一。虽然在灌溉系统中观察到稳定性和增强的农作物强度,但在雨养系统中,较低的农作物强度和较高的风险在雨水系统中普遍存在。尽管到目前为止取得了进展,但印度的雨林农业仍然遇到与生物物理,社会经济和政策相关问题有关的多种风险和约束。
Brassica Juncea(印度芥末)是一种至关重要的油料作物,非常容易受到菌核病菌根菌腐烂的影响,这是一种严重影响农作物产量和质量的病原体。这项研究评估了种子启动与生物控制剂的作用,包括枯草芽孢杆菌,Trichoderma viride及其组合对两种在田间条件下的繁殖芽孢杆菌(Rh30和Varuna)的两种。病原体接种,并在接种后10和20天(DAI)评估形态学,生化和与产量相关的参数。结果表明,枯草芽孢杆菌和T. viride的联合应用显着改善了植物高度,根和芽生物量以及茎直径。生化分析显示,二级代谢产物(如类黄酮,酚类和抗坏血酸)以及抗氧化酶的活性增加,包括过氧化氢酶(CAT),多酚氧化酶(PPO)(PPO)和过氧化物酶(POX)。这些变化与减少疾病症状相关,例如较短的茎病变长度,较少的菌根和茎损伤百分比降低。此外,在用生物控制剂处理的植物中,可以显着改善诸如每植物的小硅藻的数量,种子大小和千分光的属性属性。联合治疗的表现优于枯草芽孢杆菌或T. viride的个体应用,证明了其在降低疾病严重程度和提高产量方面的效果。这些发现提供了用于管理油料种子作物生物胁迫的化学方法的可持续替代方法。这项研究强调了将生物控制剂整合到农作物管理实践中的潜力,以提高对硬核腐烂的耐药性,并提高Juncea的生产力。
2024年12月5日在法国上一次版本的巴黎十一年,欧洲大宗商品交易所返回巴黎,在第八届大宫殿的大皇宫举行,这是这项关键谷物行业活动的合适场所。Vivescia Group及其制造业子公司很荣幸能够担任该活动的官方合作伙伴,该活动预计今年将欢迎4,000名游客,其中一个位于中央大厅的摊位(B14)。法国是欧洲最大的农业生产国,两天内将成为全球谷物和油料贸易的中心。今年的主题是“气候变化对我们新农业未来的影响”,将通过会议和圆桌会议探讨。该活动提供了一个机会,可以在可持续性和韧性方面应对该行业的当前和未来挑战,同时探索对气候变化的创新解决方案。气候变化也是Vivescia在过去几年中所接受的主题,使其成为该集团战略的核心部分。这一承诺既反映了,这既反映了,这是由SBTI Flag认证的2030年气候目标的实现强调 - 并通过过渡计划集体地。作为第一个大规模影响计划,将整个价值链汇集在一起,从上游农业到下游食品加工,该计划将是Vivescia Group总裁ChristophBüren在圆桌讨论中提出的关键主题。这将是他强调关键信息的机会:“在开发的第一年之后,过渡计划将远景变成了行动。过渡是欧洲同类系统中最大的系统计划,其旨在扩展我们的合作领域。该计划已经在其他国家进行了复制,我们也在努力与法国的其他合作社复制。过渡已成为测试农业,能源和食品行业解决方案的实验室。这是我们积极足迹的象征,它正在推动农业世界的进步。”
大豆[Glycine Max(L.)Merr。]由于其有价值的种子成分,是全球重要的农作物,代表了全球农业贸易的最大,最集中的部分(Gale等,2019)。农作物在世界上可耕地的大约6%上种植,由于其独特的种子份量而被称为“金色奇迹豆”,约占总蛋白质餐食的70%,超过60%的全球油料生产总量(Hartman et al。,2011,2011; 2011; 2011; 2011年; 20122年;美国202222222222222岁; Vieira&Chen&Chen&Chen&Chen,2021。在2021年,世界大豆生产总计37170万吨(MT),巴西(134.9吨),美国(120.7吨)和阿根廷(46.2吨)(46.2吨)(FAO,2023年),巴西(134.9 MT),美国(120.7 MT)(FAO,120.7 MT),总计81.2%的生产。国际对大豆的需求是由独特的种子成分概况提供的多功能饲料,食物和工业最终用途的驱动的。这一需求也受到中国的影响很大,中国购买了65%的全球大豆供应(De Maria等,2020; Gale等,2019)。此外,与其他世界粮食作物相比,大豆的生产面积百分比最高,从1970年代到2010年代,并且在全球收获的地区和生产量中持续增长(FAO,2023; Hartman等,2011)。饲料和食品成分通常会影响大豆的整体生产,而工业目的历史上已经通过副产品获得了附加的价值。大豆种子由五个主要种子成分组成:蛋白质,油,碳水化合物(溶液和不溶性),灰分和水(通常显示为水分含量)。大豆粉(肥大,蛋白质,碳水化合物和灰分合并)通过营养元素,能量含量和饲料转化率来解释种子价值的大部分,而1吨大豆可以生产约79,000千克的餐食(USB,20222222; USSEC,2022)。因此,大多数大豆都被压碎,以将餐与其他成分(例如油)分开,以提取最高价值。