2022 年 9 月 20 日,大约下午 6:09,易燃液态石脑油开始充满 BP-Husky Toledo 炼油厂的燃气混合罐(“混合罐”)。液体从通常只产生蒸汽的混合罐中溢出,通过蒸汽管道将石脑油送往炼油厂的各个锅炉和熔炉。这些锅炉和熔炉中的几个开始发出明显的烟雾(图 1)。为了降低混合罐中的液位,大约在下午 6:17,液态石脑油被送往炼油厂火炬系统并排入油污水管道。从大约下午 6:32 开始,混合罐中的石脑油也被直接排到地面,形成蒸汽云。大约下午 6:46,地面上形成的易燃石脑油蒸气云到达点火源,引发大火,造成两名员工 [Max Morrissey 和 Ben Morrissey] 死亡,并导致炼油厂内大量财产损失。
为海岸警卫队海洋环境响应规划、准备和行动提供指导、政策和工具,以防止、执行、调查、应对和减轻向美国可通航水域排放石油和危险物质的威胁、频率和后果。
中国南部技术大学经济与商学院物流工程系,中国广州。b后勤与海事研究系,香港理工大学,中国香港九龙霍姆·霍姆。摘要:为了降低石油港口的风险并提高安全性,本研究提出了一种分析民用责任风险和刑事责任责任风险的方法。通过方案分析和数据分析,本研究估计了每个溢出场景的概率,溢出,伤亡,实际补偿和总溢出成本,包括当船只泊位,在泊位接近泊位和端口移动时,装载臂/软管破裂和船体故障。根据这些估计因素和法律责任,石油港口和船东承担的民事责任风险和刑事责任风险。最后,以研究案例作为研究案例,以验证所提出的方法的适用性,以大湾地区大湾地区的石油末端数据进行数据。估计的概率和后果可以帮助判断哪种情况会导致犯罪并为紧急容量装备提供参考,并且估计的风险对于减轻损失和预防犯罪是有用的。调查结果和分析表明,薪酬率低以及中国漏油标准的不一致,因此建议加强对民事补偿的执行和统一的罪名标准。关键字:油端口;海洋污染;漏油;定量风险评估;法律责任。
缩写或首字母缩略词 定义 ACP 区域应急计划 BOEM 海洋能源管理局 BSEE 安全与环境执法局 CFR 联邦法规 COP 建设与运营计划 EPA 美国环境保护署 ERT 应急响应小组 ESI 环境敏感度指数 °F 华氏度 FOSC 联邦现场协调员 gal 加仑/加仑 HSSE 健康、安全、安保与环境 IAP 事件行动计划 IC 事件指挥官 ICP 事件指挥所 ICS 事件指挥系统 IMS 事件管理系统 IMT 事件管理小组 IO 信息官 kg 千克 km 公里 m 3 立方米 MassDEP 马萨诸塞州环境保护部 Mayflower Wind Mayflower Wind Energy LLC MHz 兆赫 LO 联络官 nm 海里/海里 NMFS 国家海洋渔业局 NOAA 国家海洋和大气管理局 NRC 国家响应中心 NRT 国家响应小组 OCS 外大陆架 OSHA 职业安全与健康管理部门 OSIC 现场事故指挥官 OSP 海上变电站平台 OSPD 石油泄漏防范部门 OSRC 石油泄漏响应协调员 OSRO 石油泄漏响应组织 OSRP 石油泄漏响应计划 psi 磅/平方英寸
深水地平线 (DWH) 大规模和持续性漏油事件对应急响应能力提出了挑战,需要在天气和操作层面进行准确、定量的石油评估。尽管经验丰富的观察员是溢油应急响应的中流砥柱,但训练有素的观察员人数很少,而且天气、石油乳化和场景照明几何等混杂因素也带来了挑战。广泛的机载和星载被动和主动遥感技术辅助了 DWH 溢油和影响监测。油膜厚度和油水乳化比是控制/清理的关键溢油响应参数,对于厚 (>0.1 毫米) 油膜,这些参数是从 AVIRIS(机载可见光/红外成像光谱仪)数据中定量得出的,使用基于近红外光谱吸收特征的形状和深度的光谱库方法。MODIS(中分辨率成像光谱仪)卫星,可见光谱宽带数据,表面浮油对太阳反射的调制,允许推断总浮油。多光谱专家系统使用神经网络方法提供快速响应厚度类别图。机载和卫星合成孔径雷达(SAR)提供全天空条件下的天气数据;然而,SAR 通常无法区分厚(>100 μ m)的油膜和薄油膜(至 0.1 μ m)。UAVSAR(无人驾驶飞行器 SAR)的信噪比显著提高,空间分辨率更高,可以成功区分与油膜厚度、表面覆盖率和乳化程度相结合的模式。使用 AVIRIS 研究了现场燃烧和烟羽,并证实了星载 CALIPSO(云气溶胶激光雷达和红外路径探测卫星观测)对燃烧气溶胶的观测。CALIPSO 和水深测量激光雷达数据记录了浅层地下石油,尽管需要辅助数据进行确认。机载高光谱、热红外数据具有夜间和阴天收集优势,并且与 MODIS 热数据一样被收集。然而,解释挑战和缺乏快速反应产品阻碍了其大量使用。快速反应产品是响应利用的关键——数据需求对时间至关重要;因此,高技术准备水平对于遥感产品的运营使用至关重要。DWH 的经验表明,开发和投入使用新的溢油应急遥感工具必须先于下一次重大石油泄漏事件发生。© 2012 Elsevier Inc. 保留所有权利。
在事件发生之初,侦察飞行报告通常对于确定污染的性质和规模至关重要。在适当的情况下,应在响应的初始阶段将飞行安排作为高度优先事项。空中观察策略以及相关机构和飞机运营商的联系方式应是相关应急计划的关键条目。在初步动员之后,应定期进行后续飞行(图 1)。这些通常安排在每天的开始或结束时,以便结果可用于决策会议来计划响应操作。应协调航班,包括其时间表和飞行路线,以避免机构之间不必要的重复。随着污染情况得到控制,对航班的需求将减少并最终结束。安全考虑至关重要,在起飞前应就侦察行动的所有方面咨询飞行员。应定期向参加飞行的人员详细介绍飞机的安全特性以及紧急情况下应遵循的程序。应提供并使用合适的个人防护设备,如救生衣。在选择最合适的飞机时,需要考虑泄漏的位置、最近的飞机跑道、燃料获取途径以及侦察飞行要覆盖的距离。用于空中观察的任何飞机都必须具有良好的全方位可视性并携带合适的导航辅助设备。例如,对于固定翼飞机,高架机翼可提供更好的可视性(图 2)。在近岸水域,直升机的灵活性是一种优势,例如在勘测有悬崖、海湾和岛屿的复杂海岸线时。然而,在公海上,飞行速度、方向和高度的快速变化需求较少,固定翼飞机的速度和航程更具优势。选择飞机时应考虑运行速度,因为如果速度太快,观察和记录油污的能力就会降低,如果速度太慢,飞行距离就会受到限制。对于公海上的勘测,双引擎或多引擎飞机提供的额外安全裕度至关重要,
A. 缩略语 CAA 清洁空气法案 CERCLA 1980 年综合环境响应、赔偿和责任法案 CHEMTREC 化学品运输应急中心 DPS 公共安全部 DSHS 国务院卫生服务部 EHS 极度危险物质 EMC 应急管理协调员 EPCRA 应急规划、1986 年社区知情权法案 ERG 应急响应指南(美国运输部) GDEM 州长应急管理部 GLO 土地总署 HC 危险化学品 HS 危险物质 ICS 事故指挥系统 ICP 事故指挥所 LEPC 地方应急规划委员会 MSDS 材料安全数据表 NIMS 国家事故管理系统 NRC 国家响应中心 NRP 国家响应计划 OSHA 职业安全与健康管理局 PPE 个人防护设备 RCRA 资源保护与恢复法案 RMP 风险管理计划 RRC 铁路委员会 RRT 区域响应小组 SARA III 1997 年超级基金修正案和再授权法案1986 年,第三章(又称 EPCRA) SERC 州紧急响应委员会 SERT 州紧急响应小组 SOC 州运营中心 SONS 全国性重大泄漏 SOP 标准操作程序 TCRA 德克萨斯州社区知情权法案 TCEQ 德克萨斯州环境质量委员会 TxDOT 德克萨斯州交通运输部 B. 定义
最近的研究表明高光谱图像的实用性,尽管目前高光谱数据集的解释需要专业知识。自动化所使用的信息提取过程将使高光谱传感器输出更容易集成到操作中。光学(可见光、多光谱 (MS) 和紫外线 (UV))和热红外 (TIR) 传感器通常用于石油泄漏监测,而静态和视频摄像机的视觉解释仍然是操作监视的重要组成部分。石油可能与其他现象混淆,特别是如果解释不是由受过培训的操作员进行的。有大量的知识描述使用视觉仪器绘制和描述水上石油的情况,但几乎没有经过验证的信息可以描述它们在冰冻条件下的使用。光学系统的弱点是它们依赖于良好的能见度,而在北极条件下能见度有限,而 TIR 则受到的限制较少。